Advertisement

A New Approach for Optimizing Traffic Signals in Networks Considering Rerouting

  • Duc Quynh TranEmail author
  • Ba Thang Phan Nguyen
  • Quang Thuan Nguyen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 359)

Abstract

In traffic signal control, the determination of the green time and the cycle time for optimizing the total delay time is an important problem. We investigate the problem by considering the change of the associated flows at User Equilibrium resulting from the given signal timings (rerouting). Existing models are solved by the heuristic-based solution methods that require commercial simulation softwares. In this work, we build two new formulations for the problem above and propose two methods to directly solve them. These are based on genetic algorithms (GA) and difference of convex functions algorithms (DCA).

Keywords

DC algorithm Genetic algorithm Traffic signal control Bi-level optimization model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almond, J., Lott, R.S.: The Glasgow experiment: Implementation and assessment. Road Research Laboratory Report 142, Road Research Laboratory, Crowthorne (1968)Google Scholar
  2. 2.
    Ben Ayed, O., Boyce, D.E., Blair, C.E.: A general bi-level linear programming formulation of the network design problem. Transportation Research Part B 22(4), 311–318 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ceylan, H., Bell, M.G.H.: Traffic signal timing optimisation based on genetic algorithm approach, including drivers’ routing. Transportation Research Part B 38(4), 329–342 (2004)CrossRefGoogle Scholar
  4. 4.
    Cree, N.D., Maher, M.J., Paechter, B.: The continuous equilibrium optimal network design problem: A genetic approach. In: Bell, M.G.H. (ed.) Transportation Networks: Recent Methodological Advances, pp. 163–174. Pergamon, Oxford (1998)Google Scholar
  5. 5.
    Fitsum, T., Agachai, S.: A genetic algorithm approach for optimizing traffic control signals considering routing. Computer-Aided Civil and Infrastructure Engineering 22, 31–43 (2007)CrossRefGoogle Scholar
  6. 6.
    Friesz, T.L., Cho, H.J., Mehta, N.J., Tobin, R., Anandalingam, G.: A simulated annealing approach to the network design problem with variational inequality constraints. Transportation Science 26, 18–26 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Friesz, T.L., Tobin, R.L., Cho, H.J., Mehta, N.J.: Sensitivity analysis based heuristic algorithms for mathematical programs with variational inequality constraints. Mathematical Programming 48, 265–284 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hunt, P.B., Robertson, D.I., Bretherton, R.D., Winton, R.I.: SCOOT - A traffic responsive method of coordinating signals. TRRL Laboratory Report 1014, TRRL, Berkshire, England (1981)Google Scholar
  9. 9.
    Lawphongpanich, S., Hearn, D.W.: An MPEC approach to second-best toll pricing. Mathematical Programming B 101(1), 33–55 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    LeBlanc, L., Boyce, D.: A bi-level programming for exact solution of the network design problem with user-optimal. Transportation Research Part B: Methodological 20(3), 259–265 (1986)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Le Thi, H.A.: Contribution à l’optimisation non-convex and l’optimisation globale: Théorie, Algorithmes et Applications, Habilitation à Diriger des recherches, Université de Rouen (1997)Google Scholar
  12. 12.
    Le Thi, H.A., Pham Dinh, T.: A Continuous approach for globally solving linearly constrained quadratic zero-one programming problem. Optimization 50(1-2), 93–120 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Le Thi, H.A., Pham Dinh, T., Huynh, V.N.: Exact penalty and error bounds in DC programming. Journal of Global Optimization 52(3), 509–535 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Le Thi, H.A., Pham Dinh, T.: A Branch and Bound Method via d.c. Optimization Algorithms and Ellipsoidal Technique for Box Constrained Nonconvex Quadratic Problems. Journal of Global Optimization 13, 171–206 (1998)CrossRefzbMATHGoogle Scholar
  15. 15.
    Le Thi, H.A., Pham Dinh, T.: The DC(difference of convex functions) Programming and DCA revisited with DC models of real world non convex optimization problems. Annals of Operations Research 133, 23–46 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Springer (2004)Google Scholar
  17. 17.
    Luo, Z., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, New York (1996)CrossRefGoogle Scholar
  18. 18.
    Meng, Q., Yang, H., Bell, M.G.H.: An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem. Transportation Research Part B 35(1), 83–105 (2001)CrossRefGoogle Scholar
  19. 19.
    Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c Programming: Theory, Algorithms and Applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM J. Optimization 8, 476–505 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Robertson, D.I.: ‘TRANSYT’ method for area traffic control. Traffic Engineering and Control 10, 276–281 (1969)Google Scholar
  22. 22.
    Schaefer, R.: Foundations of Global Genetic Optimization. SCI, vol. 74. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  23. 23.
    Shepherd, S.P.: A Review of Traffic Signal Control. Publisher of University of Leeds, Institute for Transport Studies (1992)Google Scholar
  24. 24.
    Suwansirikul, C., Friesz, T.L., Tobin, R.L.: Equilibrium decomposed optimization: A heuristic for the continuous equilibrium network design problem. Transportation Science 21(4), 254–263 (1987)CrossRefzbMATHGoogle Scholar
  25. 25.
    Van Vliet, D.: SATURN - A modern assignment model. Traffic Engineering and Control 23, 578–581 (1982)Google Scholar
  26. 26.
    Verhoef, E.T.: Second-best congestion pricing in general networks: Heuristic algorithms for finding second-best optimal toll levels and toll points. Transportation Research Part B 36(8), 707–729 (2002)CrossRefGoogle Scholar
  27. 27.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. Proceedings of Institution of Civil Engineers 1(2), 325–378 (1952)Google Scholar
  28. 28.
    Webster, F.V.: Traffic Signal Settings. Road Research Technical Paper No. 39, HMSO, London (1958)Google Scholar
  29. 29.
    Wu, X., Deng, S., Du, X.: Jing MaGreen-Wave Traffic Theory Optimizationand Analysis. World Journal of Engineering and Technology 2, 14–19 (2014)CrossRefGoogle Scholar
  30. 30.
    Yang, H.: Sensitivity analysis for the elastic-demand network equilibrium problem with with applications. Transportation Research Part B 31(1), 55–70 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Duc Quynh Tran
    • 1
    Email author
  • Ba Thang Phan Nguyen
    • 2
  • Quang Thuan Nguyen
    • 2
  1. 1.FITA, Vietnam National University of AgricultureHanoiVietnam
  2. 2.SAMI, Hanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations