Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071
CAS
PubMed
Google Scholar
Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119:651–665
CAS
PubMed Central
PubMed
Google Scholar
Ali MY, Ping CY, Mok YY et al (2006) Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol 149:625–634
CAS
PubMed Central
PubMed
Google Scholar
Artaud I, Galardon E (2014) A persulfide analogue of the nitrosothiol SNAP: formation, characterization and reactivity. Chembiochem 15:2361–2364
CAS
PubMed
Google Scholar
Bailey TS, Zakharov LN, Pluth MD (2014) Understanding hydrogen sulfide storage: probing conditions for sulfide release from hydrodisulfides. J Am Chem Soc 136:10573–10576
CAS
PubMed Central
PubMed
Google Scholar
Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518
CAS
PubMed
Google Scholar
Bouillaud F, Blachier F (2011) Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal 15:379–391
CAS
PubMed
Google Scholar
Broniowska KA, Hogg N (2012) The chemical biology of S-nitrosothiols. Antioxid Redox Signal 17:969–980
CAS
PubMed Central
PubMed
Google Scholar
Calvert JW, Jha S, Gundewar S et al (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374
CAS
PubMed Central
PubMed
Google Scholar
Calvert JW, Elston M, Nicholson CK et al (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122:11–19
PubMed Central
PubMed
Google Scholar
Carballal S, Radi R, Kirk MC, Barnes S, Freeman BA, Alvarez B (2003) Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 42:9906–9914
CAS
PubMed
Google Scholar
Carballal S, Trujillo M, Cuevasanta E et al (2011) Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic Biol Med 50:196–205
CAS
PubMed
Google Scholar
Chen W, Liu C, Peng B, Zhao Y, Pacheco A, Xian M (2013) New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem Sci 4:2892–2896
CAS
PubMed Central
PubMed
Google Scholar
Chung KK, Thomas B, Li X et al (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331
CAS
PubMed
Google Scholar
Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, Bendetz-Nezer S, Yao Z, Seger R (2007) DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell 25:297–308
CAS
PubMed
Google Scholar
Coletta C, Papapetropoulos A, Erdelyi K et al (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA 109(23):9161–9166
CAS
PubMed Central
PubMed
Google Scholar
Cuevasanta E, Denicola A, Alvarez B, Moller MN (2012) Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS ONE 7:e34562
CAS
PubMed Central
PubMed
Google Scholar
D’Amours D, Desnoyers S, D'Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342:249–268
PubMed Central
PubMed
Google Scholar
Das TN, Huie RE, Neta P, Padmaja S (1999) Reduction potential of the sulfhydryl radical: pulse radiolysis and laser flash photolysis studies of the formation and reactions of center dot SH and HSSH center dot(-) in aqueous solutions. J Phys Chem A 103:5221–5226
CAS
Google Scholar
Du J, Huang Y, Yan H et al (2014) Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway. J Biol Chem 289:9741–9753
CAS
PubMed Central
PubMed
Google Scholar
Eberhardt M, Dux M, Namer B et al (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:4381
CAS
PubMed Central
PubMed
Google Scholar
Filipovic MR, Miljkovic J, Allgäuer A et al (2012a) Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochem J 441:609–621
CAS
PubMed
Google Scholar
Filipovic MR, Miljkovic J, Nauser T et al (2012b) Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J Am Chem Soc 134:12016–12027
CAS
PubMed Central
PubMed
Google Scholar
Filipovic MR, Eberhardt M, Prokopovic V et al (2013) Beyond H2S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem 56:1499–1508
CAS
PubMed
Google Scholar
Flavin M (1962) Microbial transsulfuration: the mechanism of an enzymatic disulfide elimination reaction. J Biol Chem 237:768–777
CAS
PubMed
Google Scholar
Forrester MT, Foster MW, Benhar M, Stamler JS (2009) Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 46:119–126
CAS
PubMed Central
PubMed
Google Scholar
Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391–404
CAS
PubMed Central
PubMed
Google Scholar
Francoleon NE, Carrington SJ, Fukuto JM (2011) The reaction of H2S with oxidized thiols: generation of persulfides and implications to H2S biology. Arch Biochem Biophys 516:146–153
CAS
PubMed
Google Scholar
Fujii S, Akaike T (2013) Redox signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger. Antioxid Redox Signal 19:1236–1246
CAS
PubMed
Google Scholar
Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347
CAS
PubMed
Google Scholar
Giorgio M, Migliaccio E, Orsini F et al (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233
CAS
PubMed
Google Scholar
Greiner R, Palinkas Z, Basell K et al (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765
CAS
PubMed Central
PubMed
Google Scholar
Gupta V, Carroll KS (2014) Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 1840:847–875
CAS
PubMed Central
PubMed
Google Scholar
Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674
CAS
PubMed
Google Scholar
Heimer NE (1981) Biologically oriented organic sulfur chemistry. 21. Hydrodisulfide of a penicillamine derivative and related compounds. J Org Chem 46:1374–1377
CAS
Google Scholar
Herrmann M, Widmann T, Colaianni G, Colucci S, Zallone A, Herrmann W (2005) Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin Chem 51:2348–2353
CAS
PubMed
Google Scholar
Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287:4411–4418
CAS
PubMed Central
PubMed
Google Scholar
Hill BC, Woon TC, Nicholls P, Peterson J, Greenwood C, Thomson AJ (1984) Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-paramagnetic-resonance study. Biochem J 224:591–600
CAS
PubMed Central
PubMed
Google Scholar
Hourihan JM, Kenna JG, Hayes JD (2013) The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. Antioxid Redox Signal 19:465–481
CAS
PubMed
Google Scholar
Hybertson BM, Gao B, Bose SK, McCord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 32:234–246
CAS
PubMed
Google Scholar
Ida T, Sawa T, Ihara H et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111:7606–7611
CAS
PubMed Central
PubMed
Google Scholar
Ivanovic-Burmazovic I, Filipovic MR (2012) WO2012/175630
Google Scholar
Jackson MR, Melideo SL, Jorns MS (2012) Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–6815
CAS
PubMed
Google Scholar
Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782
CAS
PubMed Central
PubMed
Google Scholar
Kabil O, Motl N, Banerjee R (2014) H2S and its role in redox signaling. Biochim Biophys Acta. doi:10.1016/j.bbapap.2014.01.002
PubMed
Google Scholar
Karala AR, Ruddock LW (2007) Does s-methyl methanethiosulfonate trap the thiol-disulfide state of proteins? Antioxid Redox Signal 9:527–531
CAS
PubMed
Google Scholar
Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309
CAS
PubMed Central
PubMed
Google Scholar
Kimura H (2014) Hydrogen sulfide and polysulfides as biological mediators. Molecules 19:16146–16157
PubMed
Google Scholar
Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795–803
CAS
PubMed
Google Scholar
Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J, Kimura H (2013) Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 27:2451–2457
CAS
PubMed
Google Scholar
Koenitzer JR, Isbell TS, Patel HD et al (2007) Hydrogen sulfide mediates vasoactivity in an O-2-dependent manner. Am J Physiol Heart Circ Physiol 292:H1953–H1960
CAS
PubMed
Google Scholar
Kotronarou A, Hoffmann MR (1991) Catalytic autooxidation of hydrogen sulfide in wastewater. Environ Sci Technol 25:1153–1160
CAS
Google Scholar
Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 4(203):ra86
PubMed Central
PubMed
Google Scholar
Kutney GW, Turnbull K (1982) Compounds containing the sulfur-sulfur double bond. Chem Rev 82:333–357
CAS
Google Scholar
Li L, Bhatia M, Zhu YZ et al (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198
CAS
PubMed
Google Scholar
Li L, Hsu A, Moore PK (2009) Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation–a tale of three gases! Pharmacol Ther 123:386–400
CAS
PubMed
Google Scholar
Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R (2014) Organization of the human mitochondrial H2S oxidation pathway. J Biol Chem pii: jbc.M114.602664
Google Scholar
Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Circ Res 106:633–646
CAS
PubMed Central
PubMed
Google Scholar
Liu C, Chen W, Shi W et al (2014a) Rational design and bioimaging applications of highly selective fluorescence probes for hydrogen polysulfides. J Am Chem Soc 136:7257–7260
CAS
PubMed Central
PubMed
Google Scholar
Liu C, Zhang F, Munske G, Zhang H, Xian M (2014b) Isotope dilution mass spectrometry for the quantification of sulfane sulfurs. Free Radic Biol Med 76C:200–207
Google Scholar
Liu Y, Yang R, Liu X et al (2014c) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 15:66–78
CAS
PubMed Central
PubMed
Google Scholar
Mathai JC, Missner A, Kugler P et al (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638
CAS
PubMed Central
PubMed
Google Scholar
Melton LJ 3rd (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141
PubMed
Google Scholar
Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485
CAS
PubMed
Google Scholar
Miljkovic JL, Kenkel I, Ivanovic-Burmazovic I, Filipovic MR (2013) Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S. Angew Chem Int Ed Engl 52:12061–12064
CAS
PubMed
Google Scholar
Minton AP (1998) Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol 295:27–149
Google Scholar
Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27:601–611
PubMed
Google Scholar
Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87
CAS
PubMed
Google Scholar
Moriarty-Craige SE, Jones DP (2004) Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr 24:481–509
CAS
PubMed
Google Scholar
Mueller EG (2006) Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2:185–194
CAS
PubMed
Google Scholar
Mustafa AK, Gadalla MM, Sen N et al (2009a) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72
PubMed Central
PubMed
Google Scholar
Mustafa AK, Gadalla MM, Snyder SH (2009b) Signaling by gasotransmitters. Sci Signal 2:re2
PubMed Central
PubMed
Google Scholar
Mustafa AK, Sikka G, Gazi SK et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268
CAS
PubMed Central
PubMed
Google Scholar
Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543
CAS
PubMed
Google Scholar
Napetschnig J, Wu H (2013) Molecular basis of NF-κB signaling. Annu Rev Biophys 42:443–468
CAS
PubMed Central
PubMed
Google Scholar
Nicholls P, Marshall DC, Cooper CE, Wilson MT (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans 41:1312–1316
CAS
PubMed
Google Scholar
Nishida M, Sawa T, Kitajima N et al (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724
CAS
PubMed Central
PubMed
Google Scholar
Nishida M, Toyama T, Akaike T (2014) Role of 8-nitro-cGMP and its redox regulation in cardiovascular electrophilic signaling. J Mol Cell Cardiol 73:10–17
CAS
PubMed
Google Scholar
Olson KR (2012) A practical look at the chemistry and biology of hydrogen sulfide. Antioxid Redox Signal 17:32–44
CAS
PubMed Central
PubMed
Google Scholar
Olson KR, Healy MJ, Qin Z et al (2008) Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 295:R669–R680
CAS
PubMed
Google Scholar
Olson KR, DeLeon ER, Liu F (2014) Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 41:11–26
CAS
PubMed
Google Scholar
Ono K, Akaike T, Sawa T et al (2014) Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2014.09.007
PubMed
Google Scholar
Pálinkás Z, Furtmüller PG, Nagy A et al (2014) Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol. doi:10.1111/bph.12769
PubMed
Google Scholar
Pan J, Carroll KS (2013) Persulfide reactivity in the detection of protein S-sulfhydration. ACS Chem Biol 8:1110–1116
CAS
PubMed Central
PubMed
Google Scholar
Papapetropoulos A, Pyriochou A, Altaany Z et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977
CAS
PubMed Central
PubMed
Google Scholar
Park CM, Macinkovic I, Filipovic MR, Xian M (2015) Use of the “Tag-Switch” method for the detection of protein S-Sulfhydration. Methods Enzymol. doi:10.1016/bs.mie.2014.11.033
Google Scholar
Parsons LB, Walton JH (1921) Preparation and properties of the persulfides of hydrogen. J Am Chem Soc 43:2539–2548
Google Scholar
Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507
CAS
PubMed
Google Scholar
Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113:4633–4679
CAS
PubMed Central
PubMed
Google Scholar
Paulsen CE, Truong TH, Garcia FJ et al (2011) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8:57–64
PubMed Central
PubMed
Google Scholar
Peaper DR, Wearsch PA, Cresswell P (2005) Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 24:3613–3623
CAS
PubMed Central
PubMed
Google Scholar
Peng YJ, Nanduri J, Raghuraman G et al (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724
CAS
PubMed Central
PubMed
Google Scholar
Pietri R, Lewis A, León RG et al (2009) Factors controlling the reactivity of hydrogen sulfide with hemeproteins. Biochemistry 48:4881–4894
CAS
PubMed Central
PubMed
Google Scholar
Pittenge MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147
Google Scholar
Poynton RA, Hampton MB (2014) Peroxiredoxins as biomarkers of oxidative stress. Biochim Biophys Acta 1840:906–912
CAS
PubMed
Google Scholar
Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74
CAS
PubMed
Google Scholar
Reynolds JD, Bennett KM, Cina AJ et al (2013) S-nitrosylation therapy to improve oxygen delivery of banked blood. Proc Natl Acad Sci USA 110:11529–11534
CAS
PubMed Central
PubMed
Google Scholar
Riahi S, Rowley CN (2014) Why can hydrogen sulfide permeate cell membranes? J Am Chem Soc 136:15111–15113
CAS
PubMed
Google Scholar
Ríos-González BB, Román-Morales EM, Pietri R, López-Garriga J (2014) Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem 133:78–86
PubMed Central
PubMed
Google Scholar
Sen N, Paul BD, Gadalla MM et al (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24
CAS
PubMed Central
PubMed
Google Scholar
Seth D, Stamler JS (2011) The SNO-proteome: causation and classifications. Curr Opin Chem Biol 15:129–136
CAS
PubMed Central
PubMed
Google Scholar
Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222
CAS
PubMed
Google Scholar
Sparatore A, Perrino E, Tazzari V et al (2008) Pharmacological profile of a novel H2S-releasing aspirin. Free Radic Biol Med 46:586–592
PubMed
Google Scholar
Steudel R, Drozdova Y, Miaskiewicz K, Hertwig RH, Koch W (1997) How unstable are thiosulfoxides? An ab initio MO study of various disulfanes RSSR (R = H, Me, Pr, All), their branched isomers R2SS, and the related transition states. J Am Chem Soc 119:1990–1996
CAS
Google Scholar
Szabó C, Papapetropoulos A (2011) Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 164:853–865
PubMed Central
PubMed
Google Scholar
Szczesny B, Módis K, Yanagi K et al (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130
CAS
PubMed Central
PubMed
Google Scholar
Talipov MR, Timerghazin QK (2013) Protein control of S-nitrosothiol reactivity: interplay of antagonistic resonance structures. J Phys Chem B 117:1827–1837
CAS
PubMed
Google Scholar
Terzić V, Padovani D, Balland V, Artauda I, Galardon E (2014) Electrophilic sulfhydration of 8-nitro-cGMP involves sulfane sulfur. Org Biomol Chem 12:5360–5364
PubMed
Google Scholar
van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423:773–777
PubMed
Google Scholar
Vandiver MS, Paul BD, Xu R et al (2013) Sulfhydration mediates neuroprotective actions of parkin. Nat Commun 4:1626
PubMed Central
PubMed
Google Scholar
Vitvitsky V, Kabil O, Banerjee R (2012) High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 17:22–31
CAS
PubMed Central
PubMed
Google Scholar
Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101:2040–2045
CAS
PubMed Central
PubMed
Google Scholar
Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1808
CAS
PubMed
Google Scholar
Wedmann R, Bertlein S, Macinkovic I, Boeltz S, Miljkovic J, Munoz L, Herrmann M, Filipovic MR (2014) Working with “H2S”: facts and apparent artifacts. Nitric Oxide 41:85–96
CAS
PubMed
Google Scholar
Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32
CAS
PubMed
Google Scholar
Whiteman M, Li L, Kostetski I et al (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310
CAS
PubMed
Google Scholar
Wood JL (1987) Sulfane sulfur. Methods Enzymol 143:25–29
CAS
PubMed
Google Scholar
Xie ZZ, Shi MM, Xie L et al (2014) Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal. doi:10.1089/ars.2013.5604
PubMed Central
Google Scholar
Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237
CAS
PubMed
Google Scholar
Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY, Bian JS (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med 50(10):1314–23
CAS
PubMed
Google Scholar
Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–200013
CAS
PubMed Central
PubMed
Google Scholar
Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590
CAS
PubMed Central
PubMed
Google Scholar
Yang G, Zhao K, Ju Y et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919
CAS
PubMed
Google Scholar
Yang J, Gupta V, Carroll KS, Liebler DC (2014) Site-specific mapping and quantification of protein S-sulphenylation in cells. Nat Commun 5:4776
CAS
PubMed Central
PubMed
Google Scholar
Yong QC, Hu LF, Wang S, Huang D, Bian JS (2010) Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res 88:482–491
CAS
PubMed
Google Scholar
Yong QC, Cheong JL, Hua F et al (2011) Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide. Antioxid Redox Signal 14:2081–2091
CAS
PubMed
Google Scholar
Yoshida T, Inoue R, Morii T et al (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607
CAS
PubMed
Google Scholar
Zhang D, Macinkovic I, Devarie-Baez NO et al (2014) Detection of protein S-sulfhydration by a tag-switch technique. Angew Chem Int Ed Engl 53:575–581
CAS
PubMed Central
PubMed
Google Scholar
Zhao Y, Bhushan S, Yang C et al (2013) Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol 8:1283–1290
CAS
PubMed Central
PubMed
Google Scholar
Zhao K, Ju Y, Li S, Altaany Z, Wang R, Yang G (2014) S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep 15:792–800
CAS
PubMed Central
PubMed
Google Scholar
Zhou Z, von Wantoch Rekowski M, Coletta C et al (2012) Thioglycine and L-thiovaline: biologically active H2S-donors. Bioorg Med Chem 20:2675–2678
CAS
PubMed
Google Scholar