Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2142))

  • 1016 Accesses

Abstract

The main goal of this chapter is to set the stage for the rest of this monograph by presenting a brief survey of some of the many facets of the theory of quasi-metric spaces. Quasi-metric spaces constitute generalizations of not only the classical Euclidean setting, but of quasi-Banach spaces and ultrametric spaces. In this work, quasi-metric spaces will constitute the natural geometric context in which our main results are going to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A function d: X → [0, ) shall be referred to as a distance provided for every x, y, z ∈ X, the function d satisfies: \(d(x,y) = 0 \Leftrightarrow x = y\), d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y).

  2. 2.

    Given a vector space \(\mathcal{X}\) over \(\mathbb{C}\), recall that a function \(\|\cdot \|: \mathcal{X} \rightarrow [0,\infty )\) is called a semi-norm provided that for each \(x,y \in \mathcal{X}\) the following three conditions hold (i) x = 0 implies \(\|x\| = 0\), (ii) \(\|\lambda x\| = \vert \lambda \vert \!\cdot \!\| x\|\), \(\forall \,\lambda \in \mathbb{C}\), and (iii) \(\|x + y\| \leq \| x\| +\| y\|\).

  3. 3.

    Such points have been historically referred to as “atoms”.

  4. 4.

    In general, given a nonempty set X, call a function μ: 2X → [0, ] an outer-measure if μ(∅) = 0 and \(\mu (E) \leq \sum _{j\in \mathbb{N}}\mu (E_{j})\) whenever \(E,\{E_{j}\}_{j\in \mathbb{N}} \subseteq 2^{X}\) satisfy \(E \subseteq \cup _{j\in \mathbb{N}}E_{j}\).

  5. 5.

    Recall that given two arbitrary quasi-metric spaces (X j , q j ), j = 0, 1, a mapping Φ: (X 0 , q 0 ) → (X 1 , q 1) is called bi-Lipschitz provided for some (hence, any) ρjq j , j = 0, 1, one has ρ 1 (Φ(x),Φ(y)) ≈ρ 0 (x,y), uniformly for x,y ∈ X 0.

  6. 6.

    Here \(L^{p}(\mathbb{R})\) and \(\ell^{p}(\mathbb{N})\) are defined in a natural fashion. See Sects. 3.2 and 5.1 below for details.

  7. 7.

    Call a quasi-metric space (X, ρ) pathwise connected provided for every pair of points x, y ∈ X, there exists a continuous path f: [0, 1] → (X, τ ρ ) with f(0) = x and f(1) = y, where τ ρ represents the canonical topology induced by the quasi-distance ρ on X. We shall refer to the set \(\Gamma:= f\big([0, 1]\big) \subseteq X\) as a continuous path joining x and y.

  8. 8.

    In general, call (X, q, μ) a d-Ahlfors-regular ultrametric space for some d ∈ (0, ) if (X, q, μ) is a d- AR space and q contains an ultrametric.

References

  1. R. Alvarado, I. Mitrea, M. Mitrea, Whitney-type extensions in quasi-metric spaces. Commun. Pure Appl. Anal. 12(1), 59–88 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Brigham, M. Mitrea, Optimal Quasi-metric in a Given Pointwise Equivalence Class Do Not Always Exist (Publicacions Matemàtiques, 2015) to appear in

    Google Scholar 

  3. R.R. Coifman, G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Mathematics, vol. 242 (Springer, New York, 1971)

    Google Scholar 

  4. R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1992)

    Google Scholar 

  6. A. Gogatishvili, P. Koskela, N. Shanmugalingam, Interpolation properties of Besov spaces defined on metric spaces. Math. Nachr. 283(2), 215–231 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Hu, D. Yang, Y. Zhou, Boundedness of singular integrals in Hardy spaces on spaces of homogeneous type. Taiwanese J. Math. 133(1), 91–135 (2009)

    MathSciNet  Google Scholar 

  8. P. Koskela, N. Shanmugalingam, H. Tuominen, Removable sets for the Poincaré inequality on metric spaces. Indiana Math. J. 49, 333–352 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. R.A. Macías, C. Segovia, Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)

    Article  MATH  Google Scholar 

  10. R.A. Macías, C. Segovia, A Decomposition into atoms of distributions on spaces of homogeneous type. Adv. Math. 33(3), 271–309 (1979)

    Article  MATH  Google Scholar 

  11. D. Mitrea, I. Mitrea, M. Mitrea, A Treatise on the Theory of Elliptic Boundary Value Problems, Singular Integral Operators, and Smoothness Spaces in Rough Domains, book manuscript, 2014

    Google Scholar 

  12. D. Mitrea, I. Mitrea, M. Mitrea, S. Monniaux, Groupoid Metrization Theory with Applications to Analysis on Quasi-Metric Spaces and Functional Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, New York, 2013)

    MATH  Google Scholar 

  13. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1976)

    Google Scholar 

  14. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30 (Princeton University Press, Princeton, NJ, 1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alvarado, R., Mitrea, M. (2015). Geometry of Quasi-Metric Spaces. In: Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces. Lecture Notes in Mathematics, vol 2142. Springer, Cham. https://doi.org/10.1007/978-3-319-18132-5_2

Download citation

Publish with us

Policies and ethics