Skip to main content

Substances Formed During Discharges

  • Chapter
  • First Online:
  • 578 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Up to date, there are two methods of producing the hydrated electrons: by means of radiolysis of water and water solutions by irradiation of γ-quanta, or electrons (Hart and Anbar, Hydrated electron 1973; Pikaev, Pulsed radiolysis of water and aqueous solutions 1965). Moreover, hydrated electrons are produced by means of the PED (Gorjachev et al, J Tech Phys Lett 11:16 1991). Since the plasma column of the PED in water has the temperature T = (10–20) × 103 K and pressure P = 10–103 MPa (Ushakov, Pulsed electrical discharge in gases 1975), it is reasonable to assume that the column is a powerful pulsed source of the UV-irradiation. Being absorbed by water, the irradiation of this part of spectrum generates reaction of photolysis (Sokolov and Stain, J Chem Phys 5:44 1966; Sokolov and Stain, J Chem Phys 9:44 1966). Last years, researches have shown that the physical-chemical properties of nanoparticles qualitatively differ from ones of both macro-objects and micro-particles (Schmid et al., Nanoparticles: from theory to application 2004; Furstner et al, Active metals: preparation characterization and applications 1996; Lue, J Phys Chem Solids 62:1599–1612 2001). Nanoclusters behave as quantum dots, i.e., inside them, as well as, in atoms, the free electrons can occupy only certain allowed energy states (Kreibig and Vollmer, Optical properties of metal clusters 1995). There are “magic” numbers of packing of atoms in nanoclusters: 13, 55, 147, 309, and 561 (Teo and Zhang, Magic numbers in clusters 2002). Thus, successes in the nanoparticles synthesis and study of their properties have stimulated explosion of applied researches of nanotechnologies and, first of all: nano-electronics, nano-optic-electronics, nano-electric-chemistry, analytical and biomedical applications of nanoparticles (Drexler, Nanosystems: molecular machinery, manufacturing and computation 1992; Siegel, Nanophase materials: synthesis, structure and properties 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Hart, M. Anbar, Hydrated Electron (Atomizdat, Moskow, 1973). (in Russian)

    Google Scholar 

  2. A.К. Pikaev, Pulsed Radiolysis of Water and Aqueous Solutions (Nauka, Moscow, 1965). (in Russian)

    Google Scholar 

  3. V.L. Gorjachev, A.S. Remennyi, N.A. Sylin, J. Tech. Phys. Lett. 11, 16 (1991). (in Russian)

    Google Scholar 

  4. V.Ya. Ushakov, Pulsed Electrical Discharge in Gases (Tomsk, 1975) (in Russian)

    Google Scholar 

  5. V. Sokolov, G. Stain, J. Chem. Phys. 5, 44 (1966)

    Google Scholar 

  6. V. Sokolov, G. Stain, J. Chem. Phys. 9, 44 (1966)

    Google Scholar 

  7. G. Schmid et al., Nanoparticles: From Theory to Application (Wiley, New York, 2004)

    Google Scholar 

  8. A. Furstner et al., Active Metals: Preparation (Characterization and Applications, VCH, Weinheim, 1996)

    Google Scholar 

  9. J.-N. Lue, J. Phys. Chem. Solids 62, 1599–1612 (2001)

    Google Scholar 

  10. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  11. B.K. Teo, H. Zhang, Magic Numbers in Clusters (M. Dekker, New York, 2002)

    Google Scholar 

  12. K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, London, 1992)

    Google Scholar 

  13. R.W. Siegel, Nanophase Materials: Synthesis, Structure and Properties (Springer, Berlin, 1994)

    Google Scholar 

  14. Y. Shamb, C. Satterfield, R. Vaptwarth, Hydride Peroxide (Moskow, 1958)

    Google Scholar 

  15. G.M. Chow, K.E. Gonsalves, et al., American Chemical Society Symposium (Washington, 1996)

    Google Scholar 

  16. M.N. Rittner, (Business Communications Co, Norwalk, 2001)

    Google Scholar 

  17. Z.L. Wang, et al., Handbook of Nanophase and Nanostructured Materials vol 1, Synthesis (Kluwer, New York, 2002)

    Google Scholar 

  18. M.T. Swihart, J. Sci. 8, 127–133 (2003)

    Google Scholar 

  19. A. Gutsch, M. Kramer, G. Michael, H. Muhlenweg, M. Pridohl, G. Zimmerman, KONA, 20, 24–37 (2002)

    Google Scholar 

  20. Y. Singh, J.R.N. Javier, S.H. Ehrman, M.H. Magnusson, K. Deppert, J. Aerosol Sci. 33, 1309–1325 (2002)

    Google Scholar 

  21. T.T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999)

    Google Scholar 

  22. V. Haas, R. Birringer, H. Gleiter, S.E. Pratisinis, J. Aerosol. Sci. 28, (1997)

    Google Scholar 

  23. A. Maisels, F.E. Kruis, H. Fissan, B. Rellinghaus, H. Zahres, J. Appl. Phys. Lett. 77, (2000)

    Google Scholar 

  24. K. Wegner, B. Walker, S. Tsantilis, S.E. Pratsinis, J. Chem. Eng. Sci. 57, 1753–1762 (2002)

    Google Scholar 

  25. M.H. Magnusson, K. Deppert, J.O. Malm, J. Mater Res. 15, 1564–1569 (2000)

    Google Scholar 

  26. A.G. Nasibulin, O. Richard, E.I. Kauppinen, D.P. Brown, J.K. Jokiniemi, I.S. Altman, J. Aerosol Sci. Technol. 36, 899 (2002)

    Google Scholar 

  27. H. Hahn, J. Nanostruct. Mater 9, 3–12 (1997)

    Google Scholar 

  28. J.H. Kim, T.A. Germer, G.W. Mulholland, S.H. Ehrman, J. Adv. Mater. 7, 14 (2002)

    Google Scholar 

  29. J.H. Kim, V.I. Babushok, T.A. Germer, G.W. Mulholland, S.H. Ehrman, J. Mater. Res. 18, 1614 (2003)

    Google Scholar 

  30. D. Chen, D.Y.H. Pui, J. Nanoparticle Res. 1, 115–126 (1999)

    Google Scholar 

  31. D.R. Chen, D.Y.H. Pui, D. Hummes, H. Fissan, F.R. Quant, G.J. Sem, J. Aerosol Sci. 29, 497–509 (1998)

    Google Scholar 

  32. W. Marine, L. Patrone, B. Luk’yanchuk, M. Sentis, J. Appl. Surface Sci. 154, 345–352 (2000)

    Google Scholar 

  33. M. Ullmann, S.K. Friedlander, A. Schmidt-Ott, J. Nanoparticle Res. 4, 499 (2002)

    Google Scholar 

  34. S. Onari, M. Miura, K. Matsuishi, J. Appl. Surface Sci. 30 (2002)

    Google Scholar 

  35. Z. Marton, L. Landstrom, M. Boman, P. Heszler, J. Mater. Science Eng. C. 1–2, 23 (2003)

    Google Scholar 

  36. Y. Kawakami, T. Seto, Y. Yoshida, E. Ozawa, J. Appl. Surface. Sci. 30, (2002)

    Google Scholar 

  37. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, J. Appl. Surface Sci. 1-2, (2002)

    Google Scholar 

  38. D. Yang, D. Kim, J. Appl. Phys. A: Mater Sci. Process. (2003)

    Google Scholar 

  39. F. Tepper, J. Powder Metal 4, 43 (2000)

    Google Scholar 

  40. P. Sen, J. Ghosh, A. Abdulla, P. Kumar, Vandana. Proc. Indian Acad. Sci. Chem. Sci. 5–6, 115 (2003)

    Google Scholar 

  41. W.H. Lee, C.H. Chung, C.L. Chung, Int. J. Nanosci. 4–5, 2 (2003)

    Google Scholar 

  42. Y. Fu, C. Shearwood, J. Scripta Materialia 3, 50 (2004)

    Google Scholar 

  43. V.S. Giri, R. Sarathi, S.R. Chakravarthy, C. Venkataseshaiah, J. Mater. Lett. 6, 58 (2004)

    Google Scholar 

  44. Yu.A. Kotov, Ch.K. Rhee, A.V. Bagazeev, I.V. Beketov, T.M. Demina, A.M. Murzakaev, O.M. Samatov, O.R. Timoshenkova, A.I. Medvedev, A.K. Shtolts, J. Metastable Nanocryst. Mater 15-16, (2003)

    Google Scholar 

  45. Q. Wang, H. Yang, J. Shi, G. Zou, J. Mater. Res. Bull. 3–4, 36 (2001)

    Google Scholar 

  46. Electroexploded metal particles: http://www.argonide.com

  47. F.G. Rutberg, V.A. Kolikov, V.E. Kurochkin, V.G. Maltsev, Rus. Pat. 2272697 (2006) (in Russian)

    Google Scholar 

  48. A.F. Routberg, V.A. Kolikov, P.G. Rutberg, A.N. Bratsev, US Pat. 7374693 (2008)

    Google Scholar 

  49. M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin, V.G. Harris, Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, USA, 2000–2004)

    Google Scholar 

  50. L.M. Liz-Marzan, J. Materials Today (2004)

    Google Scholar 

  51. C.N.R. Rao, A. Müller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications, vol. 2 (Wiley, 2004)

    Google Scholar 

  52. I. Okura, Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, USA, 2000–2004)

    Google Scholar 

  53. M.C. Daniel, D. Astruc, J. Chem. Rev. 104, 293–346(2004)

    Google Scholar 

  54. A. Nandi, M.D. Gupta, A.K. Banthia, J. Colloids Surfaces A 197, 119–124 (2002)

    Google Scholar 

  55. Y. Liu, C.-Y. Liu, L.-bo. Chen, Z.-Y. Zhang, J. Colloid Interface Sci. 257, 188–194 (2003)

    Google Scholar 

  56. С.А. Waters, А.J. Mills, К.D. Johnson, D.J. Schiffrin, J. Сhem. Соmmun. 540–541 (2003)

    Google Scholar 

  57. B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen, К.J. Klabunde, J. Langmuir 18, 7515–7520 (2002)

    Google Scholar 

  58. I. Pastoriza-Santos, L.M. Liz-Marzan, J. Langmuir 18, 3694–3697 (2002)

    Google Scholar 

  59. J. Turkevich, P.C. Stevenson, J. Hillier, J. Disc. Faraday Soc. 11, 55–75 (1951)

    Google Scholar 

  60. G. Frenz, J. Nature, Phys. Sci. 241, 20–22 (1973)

    Google Scholar 

  61. S. Qui, J. Dong, G. Chen, J. Colloid & Interface Sci. 216, 257–269 (1999)

    Google Scholar 

  62. C.M. Liu, L. Guo, H.B. Xu, Z.Y. Wu, J. Weber, J. Microelectronic Eng. 66, 107 (2003)

    Google Scholar 

  63. M.S. Hedge, D. Larcher, L. Dupont, B. Beaudoin, К. Tekaia-Elhsissen, J.M. Tarascon, J. Solid State Ionics 93, 33 (1997)

    Google Scholar 

  64. G. Frenz, J. Nature, Phys. Sci. 241, 20–22 (1973)

    Google Scholar 

  65. D.I. Gittins, F. Caruso, J. Phys. Chem. B 105, 6846 (2001)

    Google Scholar 

  66. К.S. Маууа, B. Schoeler, F. Caruso, J. Adv. Funct. Mater 13, 183–188 (2003)

    Google Scholar 

  67. D.I. Svergun, E.V. Shtykova, A.T. Dembo, L.M. Bronstein, O.A. Platonova, A.N. Yakunin, P.M. Valetsky, A.R. Khokhlov, J. Chem. Phys. 109, 11109–11116 (1998)

    Google Scholar 

  68. R. Crooks, V. Chechik, B.I. Lemon III, L. Sun, L.K. Yeng, M. Zhao, Metal Nanoparticles Synthesis, Characterization and Application (M. Dekker, New York, 2002)

    Google Scholar 

  69. J.M.J. Frechet, D.A. Tomalia, Dendrimers and Other Dendritic Polymers (Wiley, Chichester, 2001)

    Book  Google Scholar 

  70. R.H. Kodama, J. Magn. Magn. Mater. 1–3, 200 (1999)

    Google Scholar 

  71. T. Hyeon, J. Chem. Commun. 927–934 (2003)

    Google Scholar 

  72. Ph.G. Rutberg, V.A. Kolikov, V.E. Kurochkin, L.K. Panina, A.Ph. Rutberg, J. IEEE Trans. Plasma Sci. 4, 35 (2007)

    Google Scholar 

  73. H.A. Laitinen, Chemical Analysis (McGraw-Hill, New York, 1960)

    Google Scholar 

  74. V.A. Kolikov, V.E. Kurochkin, L.K. Panina, A.F. Rutberg, F.G. Rutberg, V.N. Snetov, A.Yu. Stogov, J. Tech. Phys. 2, 52 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kolikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolikov, V., Rutberg, P. (2015). Substances Formed During Discharges. In: Pulsed Electrical Discharges for Medicine and Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18129-5_5

Download citation

Publish with us

Policies and ethics