Skip to main content

A Comprehensive Analytical Model and Experimental Validation of Z-shaped Electrothermal Microactuators

  • Conference paper
  • First Online:
Recent Advances in Mechanism Design for Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 33))

Abstract

This paper presents a comprehensive analytical model for a Z-shaped electrothermal microactuator operating in air condition. The model provides the estimate of the tip displacement of the microactuator directly based on a voltage difference applied on the both anchors of the actuator. In an attempt to improve the accuracy of modeling, the impact of the shuttle and multiple pairs of beams are included in the model. The numerical simulations with a Finite Element (FE) model are conducted using the commercialized FE software ANSYS to verify the analytical model. The experimental testing is performed as well to validate the analytical model. The analytical results based on the proposed model agree well with both the FE modeling and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaron, A.G.: Electrothermal properties and modeling of polysilicon microthermal actuators. J. Microelectromech. Syst. 12(4), 513–523 (2003)

    Article  Google Scholar 

  2. Baker, M.S.: Final Report: Compliant Thermomechanical MEMS Actuators LDRD #52553, Sandia Report SAND20046635, Sandia National Laboratories, Albuquerque (2004)

    Google Scholar 

  3. Chiao, M.: Self-buckling of micromachined beams under resistive heating. J. Microelectromech. Syst. 9(1), 146–151 (2000)

    Article  Google Scholar 

  4. Eniko, E.T.: Analytical and experimental analysis of folded beam and V-shaped thermal microactuators. In: SEM 10th International Congress and Exposition, Costa Mesa, California (2004)

    Google Scholar 

  5. Eniko, E.T.: Analytical model for analysis and design of V-shaped thermal microactuators. J. Microelectromech. Syst. 14(4), 788–798 (2005)

    Article  Google Scholar 

  6. Girija, M.N.: Modelling and simulation of thermal actuator using polysilicon material. Int. J. Nanosci. Nanotechnol. 4(2), 175–180 (2013)

    MathSciNet  Google Scholar 

  7. Gregory, N.: Heat Transfer. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  8. Guan, C.: An electrothermal microactuator with Z-shaped beams. J. Micromech. Microeng. 20(8), 85014–85022 (2010)

    Article  Google Scholar 

  9. Jorge, V.: Polysilicon thermal microactuators for heat scavenging and power conversion. J. Micro-Nanolithog. MEMS and MOEMS, 8(2), 023020 1–8 (2009)

    Google Scholar 

  10. Kushkiev, I.: Modeling the thermo-mechanical behavior of a “V”-shaped composite buckle-beam thermal actuator. In: Proceedings of the COMSOL Multiphysics User’s Conference, Bostion (2005)

    Google Scholar 

  11. Liu, X.: A MEMS stage for 3-axis nanopositioning. J. Micromech. Microeng. 17, 1796–1802 (2007)

    Article  Google Scholar 

  12. Long, Q.: Bent beam electrothermal actuators-part 1: single beam and cascaded devices. J. Microelectromech. Syst. 10(2), 247–254 (2001)

    Article  Google Scholar 

  13. Lott, C.D.: Thermal modeling of a surface-micromachined linear thermomechanical actuator. In: Modeling and Simulation of Microsystems, pp. 370–373 (2001)

    Google Scholar 

  14. Lott, C.D.: Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator. Sens. Actuators 101, 239–250 (2002)

    Article  Google Scholar 

  15. Mallick, D.: Design and simulation of MEMS based thermally actuated positioning systems, 2012. In: 5th International Conference on Computers and Devices for Communication (CODEC), Kolkata, pp. 1–4 (2012)

    Google Scholar 

  16. Suen, M.S.: Optimal design of the electrothermal V-beam microactuator based on GA for stress concentration analysis. Lect. Notes Eng. Comput. Sci. 2189, 1264–1268 (2011)

    Google Scholar 

  17. William, N.: Effect of specimen size on young’s modulus and fracture strength of polysilicon. J. Microelectromech. Syst. 10(3), 317–326 (2001)

    Article  Google Scholar 

  18. Zhu, Y.: A microelectromechanical load sensor for insitu electron and x-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 86, 013506 (2005)

    Article  Google Scholar 

  19. Zhu, Y.: A thermal actuator for nanoscale insitu microscopy testing: design and characterization. J. Micromech. Microeng. 16(2), 242–253 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The work was partially supported by National Science Foundation of China (No. 51175006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Z., Zhang, W., Wu, Q., Yu, Y., Liu, X., Zhang, X. (2015). A Comprehensive Analytical Model and Experimental Validation of Z-shaped Electrothermal Microactuators. In: Bai, S., Ceccarelli, M. (eds) Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-18126-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18126-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18125-7

  • Online ISBN: 978-3-319-18126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics