An Integrated Tag Recommendation Algorithm Towards Weibo User Profiling

  • Deqing Yang
  • Yanghua XiaoEmail author
  • Hanghang Tong
  • Junjun Zhang
  • Wei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9049)


In this paper, we propose a tag recommendation algorithm for profiling the users in Sina Weibo. Sina Weibo has become the largest and most popular Chinese microblogging system upon which many real applications are deployed such as personalized recommendation, precise marketing, customer relationship management and etc. Although closely related, tagging users bears subtle difference from traditional tagging Web objects due to the complexity and diversity of human characteristics. To this end, we design an integrated recommendation algorithm whose unique feature lies in its comprehensiveness by collectively exploring the social relationships among users, the co-occurrence relationships and semantic relationships between tags. Thanks to deep comprehensiveness, our algorithm works particularly well against the two challenging problems of traditional recommender systems, i.e., data sparsity and semantic redundancy. The extensive evaluation experiments validate our algorithm’s superiority over the state-of-the-art methods in terms of matching performance of the recommended tags. Moreover, our algorithm brings a broader perspective for accurately inferring missing characteristics of user profiles in social networks.


Tag recommendation User profiling Tag propagation Chinese knowledge graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, M., Naaman, M.: Why we tag, motivations for annotation in mobile and online media. In: Proc. of CHI (2007)Google Scholar
  2. 2.
    Bar-Yossef, Z., Mashiach, L.T.: Local approximation of pagerank and reverse pagerank. In: Proc. of CIKM (2008)Google Scholar
  3. 3.
    Bellogin, A., Cantador, I., Diez, F., Castells, P., Chavarriaga, E.: An empirical comparison of social, collaborative filtering, and hybrid recommenders. ACM Transactions on Intelligent Systems and Technology 4 (2013)Google Scholar
  4. 4.
    Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisles, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: Proc. of AWIC (2007)Google Scholar
  5. 5.
    Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems (2008)Google Scholar
  6. 6.
    Chen, J., Geyer, W., Dugan, C., Muller, M., Guy, I.: Make new friends but keep the old, recommending people on social networking sites. In: Proc. of CHI (2009)Google Scholar
  7. 7.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proc. of IJCAI (2007)Google Scholar
  8. 8.
    Gupta, M., Li, R., Yin, Z., Han, J.: Survey on social tagging techniques. In: Proc. of SIGKDD (2010)Google Scholar
  9. 9.
    Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: Proc. of RecSys (2010)Google Scholar
  10. 10.
    Hassanzadeh, O., Consens, M.: Linked movie data base. In: Proc. of LDOW (2009)Google Scholar
  11. 11.
    Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: Proc. of SIGIR (2008)Google Scholar
  12. 12.
    Hofmann, T.: Latent semantic models for collaborative filtering. ACM Transactions on Information Systems 2, 89–115 (2004)CrossRefGoogle Scholar
  13. 13.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems 20, 422–446 (2002)CrossRefGoogle Scholar
  15. 15.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proc. of WWW (2010)Google Scholar
  16. 16.
    Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.C.: Towards social user profiling: unified and discriminative influence model for inferring home locations. In: Proc. of SIGKDD (2012)Google Scholar
  17. 17.
    Liu, D., Hua, X.S., Yang, L., Wang, M., Zhang, H.J.: Tag ranking. In: Proc. of WWW (2009)Google Scholar
  18. 18.
    Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: Proc. of CIKM (2008)Google Scholar
  19. 19.
    McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: Homophily in social networks. Annual Review of Sociology 27, 415–445 (2001)CrossRefGoogle Scholar
  20. 20.
    Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: Proc. of WSDM (2010)Google Scholar
  21. 21.
    Overell, S., Sigurbjornsson, B., van Zwol, R.: Classifying tags using open content resources. In: Proc. of WSDM (2009)Google Scholar
  22. 22.
    Quijano-Sanchez, L., Recio-Garcia, J.A., Diaz-Agudo, B., Jimenez-Diaz, G.: Social factors in group recommender systems. ACM Trans. on Intelligent Systems and Technology 4 (2013)Google Scholar
  23. 23.
    Sadilek, A., Kautz, H., Bigham, J.P.: Finding your friends and following them to where you are. In: Proc. of WSDM (2012)Google Scholar
  24. 24.
    Schafer, J., Konstan, J., Riedi, J.: Recommender systems in e-commerce. In: Proc. of EC (1999)Google Scholar
  25. 25.
    Sigurbjornsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. of WWW (2008)Google Scholar
  26. 26.
    Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.C., Giles, C.L.: Real-time automatic tag recommendation. In: Proc. of SIGIR (2008)Google Scholar
  27. 27.
    Wang, J., Hong, L., Davison, B.D.: Tag recommendation using keywords and association rules. In: Proc. of RSDC (2009)Google Scholar
  28. 28.
    Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: Proc. of WSDM (2010)Google Scholar
  29. 29.
    Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: collaborative tag suggestions. In: Proc. of Collaborative Web Tagging Workshop in WWW (2006)Google Scholar
  30. 30.
    Zhou, T.C., Ma, H., Lyu, M.R., King, I.: Userrec: a user recommendation framework in social tagging systems. In: Proc. of AAAI (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Deqing Yang
    • 1
  • Yanghua Xiao
    • 1
    Email author
  • Hanghang Tong
    • 2
  • Junjun Zhang
    • 1
  • Wei Wang
    • 1
  1. 1.School of Computer ScienceShanghai Key Laboratory of Data Science Fudan UniversityShanghaiChina
  2. 2.Arizona State UniversityTempeUSA

Personalised recommendations