Skip to main content

Methyl-Lysine Recognition by Ankyrin-Repeat Proteins

  • Chapter
  • First Online:
Histone Recognition

Abstract

The ankyrin repeats (ANKs) of the methyltransferases G9a and GLP bind methyllysine (meK) in a surface aromatic cage. Binding the methylation product with the very same polypeptide that generates it seems essential for some G9a/GLP functions, but it is dispensable for others. We first consider the structure of ANKs, particularly to illustrate that different binding modes can exist on the same scaffold and to facilitate the search for other meK-binding ANKs. Huntingtin (HTT)-interacting protein-14 (HIP14) was predicted based on conservation of key cage residues to also have a surface aromatic cage. This prediction has been confirmed, but the HIP14-binding partner remains elusive. HIP14 interacts with HTT through its ANKs. HTT directly binds a methyltransferase and manifests improper patterns of post-translational modification in Huntington’s disease. We have extended the search for other ANKs with meK-binding potential, and we present our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134(2–3):117–131

    Article  CAS  PubMed  Google Scholar 

  • Batchelor AH, Piper DE, de la Brousse FC, McKnight SL, Wolberger C (1998) The structure of GABPalpha/beta: an ETS domain—ankyrin repeat heterodimer bound to DNA. Science 279(5353):1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grutter MG, Pluckthun A (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22(5):575–582

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt D, Wu DY, Jeong KW, Gerke DS, Herviou L, Ianculescu I, Chodankar R, Siegmund KD, Stallcup MR (2012) G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc Natl Acad Sci USA 109(48):19673–19678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boersma YL, Chao G, Steiner D, Wittrup KD, Pluckthun A (2011) Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J Biol Chem 286(48):41273–41285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brent MM, Marmorstein R (2008) Ankyrin for methylated lysines. Nat Struct Mol Biol 15(3):221–222

    Article  CAS  PubMed  Google Scholar 

  • Caron NS, Desmond CR, Xia J, Truant R (2013) Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc Natl Acad Sci USA 110(36):14610–14615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y, Zhang X, Horton JR, Upadhyay AK, Spannhoff A, Liu J, Snyder JP, Bedford MT, Cheng X (2009) Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol 16(3):312–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y, Horton JR, Bedford MT, Zhang X, Cheng X (2011a) Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding. J Mol Biol 408(5):807–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y, Levy D, Horton JR, Peng J, Zhang X, Gozani O, Cheng X (2011b) Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling. Nucleic Acids Res 39(15):6380–6389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y, Sun L, Kokura K, Horton JR, Fukuda M, Espejo A, Izumi V, Koomen JM, Bedford MT, Zhang X, Shinkai Y, Fang J, Cheng X (2011c) MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun 2:533

    Article  PubMed Central  PubMed  Google Scholar 

  • Charollais J, Van Der Goot FG (2009) Palmitoylation of membrane proteins (Review). Mol Membr Biol 26(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Skutt-Kakaria K, Davison J, Ou YL, Choi E, Malik P, Loeb K, Wood B, Georges G, Torok-Storb B, Paddison PJ (2012) G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev 26(22):2499–2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng J, Goldstein R, Gershenson A, Stec B, Roberts MF (2013) The cation-pi box is a specific phosphatidylcholine membrane targeting motif. J Biol Chem 288(21):14863–14873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins R, Cheng X (2010) A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Nucleic Acids Res 38(11):3503–3511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins RE, Tachibana M, Tamaru H, Smith KM, Jia D, Zhang X, Selker EU, Shinkai Y, Cheng X (2005) In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 280(7):5563–5570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR, Cheng X (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15(3):245–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cong X, Held JM, DeGiacomo F, Bonner A, Chen JM, Schilling B, Czerwieniec GA, Gibson BW, Ellerby LM (2011) Mass spectrometric identification of novel lysine acetylation sites in huntingtin. Mol Cell Proteomics MCP 10(10):M111 009829

    Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(Web Server issue):W362–365

    Google Scholar 

  • Dong KB, Maksakova IA, Mohn F, Leung D, Appanah R, Lee S, Yang HW, Lam LL, Mager DL, Schubeler D, Tachibana M, Shinkai Y, Lorincz MC (2008) DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. The EMBO J 27(20):2691–2701

    Article  CAS  Google Scholar 

  • Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11(15):1983–1993

    Article  CAS  PubMed  Google Scholar 

  • Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, Deplus R, Fuks F, Shinkai Y, Cedar H, Bergman Y (2008) De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 15(11):1176–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y (2006) G9a-mediated irreversible epigenetic inactivation of oct-3/4 during early embryogenesis. Nat Cell Biol 8(2):188–194

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Collins RE, Horton JR, Zhang X, Zhang R, Dhayalan A, Tamas R, Jeltsch A, Cheng X (2009) The ankyrin repeat domain of huntingtin interacting protein 14 contains a surface aromatic cage, a potential site for methyl-lysine binding. Proteins 76(3):772–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao YG, Yang H, Zhao J, Jiang YJ, Hu HY (2014) Autoinhibitory structure of the WW domain of HYPB/SETD2 regulates its interaction with the proline-rich region of huntingtin. Structure 22(3):378–386

    Article  CAS  PubMed  Google Scholar 

  • Gatchalian J, Futterer A, Rothbart SB, Tong Q, Rincon-Arano H, Sanchez de Diego A, Groudine M, Strahl BD, Martinez AC, van Wely KH, Kutateladze TG (2013) Dido3 PHD modulates cell differentiation and division. Cell Rep 4(1):148–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R, Sicheri F (2011) Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell 147(6):1340–1354

    Article  CAS  PubMed  Google Scholar 

  • Gyory I, Wu J, Fejer G, Seto E, Wright KL (2004) PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol 5(3):299–308

    Article  CAS  PubMed  Google Scholar 

  • Hatters DM (2012) Putting huntingtin “aggregation” in view with windows into the cellular milieu. Curr Top Med Chem 12(22):2611–2622

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja RR, Metzler M, Mullard A, Haigh B, Gauthier-Campbell C, Gutekunst CA, Hayden MR, El-Husseini A (2004) Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 44(6):977–986

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Sanders SS, Kang R, Carroll JB, Sutton L, Wan J, Singaraja R, Young FB, Liu L, El-Husseini A, Davis NG, Hayden MR (2011) Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Hum Mol Genet 20(17):3356–3365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hughes RM, Wiggins KR, Khorasanizadeh S, Waters ML (2007) Recognition of trimethyllysine by a chromodomain is not driven by the hydrophobic effect. Proc Natl Acad Sci USA 104(27):11184–11188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong H, Then F, Melia TJ Jr, Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC, Yamamoto A, Krainc D (2009) Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137(1):60–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Kohl A, Binz HK, Forrer P, Stumpp MT, Pluckthun A, Grutter MG (2003) Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci USA 100(4):1700–1705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kramer MA, Wetzel SK, Pluckthun A, Mittl PR, Grutter MG (2010) Structural determinants for improved stability of designed ankyrin repeat proteins with a redesigned C-capping module. J Mol Biol 404(3):381–391

    Article  CAS  PubMed  Google Scholar 

  • Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Northrop JP, Kuo MH, Stallcup MR (2006) Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J Biol Chem 281(13):8476–8485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JS, Kim Y, Bhin J, Shin HJ, Nam HJ, Lee SH, Yoon JB, Binda O, Gozani O, Hwang D, Baek SH (2011) Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci USA 108(33):13510–13515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(Database issue):D302–305

    Google Scholar 

  • Leung DC, Dong KB, Maksakova IA, Goyal P, Appanah R, Lee S, Tachibana M, Shinkai Y, Lehnertz B, Mager DL, Rossi F, Lorincz MC (2011) Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc Natl Acad Sci USA 108(14):5718–5723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, Espejo A, Zee BM, Liu CL, Tangsombatvisit S, Tennen RI, Kuo AY, Tanjing S, Cheung R, Chua KF, Utz PJ, Shi X, Prinjha RK, Lee K, Garcia BA, Bedford MT, Tarakhovsky A, Cheng X, Gozani O (2011) Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat Immunol 12(1):29–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, Li S (2012) Influence of species differences on the neuropathology of transgenic huntington’s disease animal models. J Genet Genomics 39(6):239–245

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Meng X, Xiang Y, Deng J (2010) Structure function studies of vaccinia virus host range protein k1 reveal a novel functional surface for ankyrin repeat proteins. J Virol 84(7):3331–3338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ling BM, Bharathy N, Chung TK, Kok WK, Li S, Tan YH, Rao VK, Gopinadhan S, Sartorelli V, Walsh MJ, Taneja R (2012a) Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc Natl Acad Sci USA 109(3):841–846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ling BM, Gopinadhan S, Kok WK, Shankar SR, Gopal P, Bharathy N, Wang Y, Taneja R (2012b) G9a mediates Sharp-1-dependent inhibition of skeletal muscle differentiation. Mol Biol Cell 23(24):4778–4785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, Zheng Y, Chen S, Cai T, Gao S, Zhu B (2015) Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 29(4):379–93

    Google Scholar 

  • Ma JC, Dougherty DA (1997) The cation-pi interaction. Chem Rev 97(5):1303–1324

    Article  CAS  PubMed  Google Scholar 

  • Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Remond MC, Eisenberg CA, Eisenberg LM (2013) The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells. Stem Cell Dev 22(4):654–667

    Article  CAS  Google Scholar 

  • Michaely P, Bennett V (1995) The ANK repeats of erythrocyte ankyrin form two distinct but cooperative binding sites for the erythrocyte anion exchanger. J Biol Chem 270(37):22050–22057

    Article  CAS  PubMed  Google Scholar 

  • Mosavi LK, Minor DL Jr, Peng ZY (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA 99(25):16029–16034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci: A Publ Protein Soc 13(6):1435–1448

    Article  CAS  Google Scholar 

  • Musselman CA, Lalonde ME, Cote J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19(12):1218–1227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myant K, Termanis A, Sundaram AY, Boe T, Li C, Merusi C, Burrage J, de Las Heras JI, Stancheva I (2011) LSH and G9a/GLP complex are required for developmentally programmed DNA methylation. Genome Res 21(1):83–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nekrep N, Geyer M, Jabrane-Ferrat N, Peterlin BM (2001) Analysis of ankyrin repeats reveals how a single point mutation in RFXANK results in bare lymphocyte syndrome. Mol Cell Biol 21(16):5566–5576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishio H, Walsh MJ (2004) CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc Natl Acad Sci USA 101(31):11257–11262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442(7098):100–103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12(6):1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Purcell DJ, Jeong KW, Bittencourt D, Gerke DS, Stallcup MR (2011) A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation. J Biol Chem 286(49):41963–41971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rathert P, Dhayalan A, Murakami M, Zhang X, Tamas R, Jurkowska R, Komatsu Y, Shinkai Y, Cheng X, Jeltsch A (2008) Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol 4(6):344–346. doi:10.1038/nchembio.88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12(6):1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF (2004) Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell 14(6):727–738

    Article  CAS  PubMed  Google Scholar 

  • Sawyer N, Chen J, Regan L (2013) All repeats are not equal: a module-based approach to guide repeat protein design. J Mol Biol 425(10):1826–1838. doi:10.1016/j.jmb.2013.02.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R (2013) G9a, a multipotent regulator of gene expression. Epigenetics : Official J DNA Methylation Soc 8(1):16–22. doi:10.4161/epi.23331

    Article  CAS  Google Scholar 

  • Sharma S, Gerke DS, Han HF, Jeong S, Stallcup MR, Jones PA, Liang G (2012) Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells. Epigenetics & Chromatin 5(1):3. doi:10.1186/1756-8935-5-3

    Article  CAS  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kutateladze TG, Shi Y, Cote J, Chua KF, Gozani O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442(7098):96–99. doi:10.1038/nature04835

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574

    Article  CAS  PubMed  Google Scholar 

  • Shinkai Y, Tachibana M (2011) H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25(8):781–788. doi:10.1101/gad.2027411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41(Database issue):D344–347. doi:10.1093/nar/gks1067

  • Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, Warby S, Yanai A, Gutekunst CA, Leavitt BR, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V, Michel J, Hersch SM, Ikeda JE, Hayden MR (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet 11(23):2815–2828

    Article  CAS  PubMed  Google Scholar 

  • Singaraja RR, Huang K, Sanders SS, Milnerwood AJ, Hines R, Lerch JP, Franciosi S, Drisdel RC, Vaid K, Young FB, Doty C, Wan J, Bissada N, Henkelman RM, Green WN, Davis NG, Raymond LA, Hayden MR (2011) Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet 20(20):3899–3909. doi:10.1093/hmg/ddr308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL (2004) SUMO modification of huntingtin and huntington’s disease pathology. Science 304(5667):100–104. doi:10.1126/science.1092194

    Article  CAS  PubMed  Google Scholar 

  • Stowers RS, Isacoff EY (2007) Drosophila huntingtin-interacting protein 14 is a presynaptic protein required for photoreceptor synaptic transmission and expression of the palmitoylated proteins synaptosome-associated protein 25 and cysteine string protein. J Neurosci: Official J Soc Neurosci 27(47):12874–12883. doi:10.1523/JNEUROSCI.2464-07.2007

    Article  CAS  Google Scholar 

  • Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z (2005) Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280(42):35261–35271. doi:10.1074/jbc.M504012200

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19(7):815–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O’Rourke JG, Khashwji H, Lukacsovich T, Zhu YZ, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS (2009) IKK phosphorylates huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 187(7):1083–1099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. The EMBO J 27(20):2681–2690. doi:10.1038/emboj.2008.192

    Article  CAS  Google Scholar 

  • Trojer P, Reinberg D (2008) A gateway to study protein lysine methylation. Nat Chem Biol 4(6):332–334

    Article  CAS  PubMed  Google Scholar 

  • Vidal R, Caballero B, Couve A, Hetz C (2011) Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in huntington’s disease. Curr Mol Med 11(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228. doi:10.1016/S0140-6736(07)60111-1

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shankar SR, Kher D, Ling BM, Taneja R (2013) Sumoylation of the basic helix-loop-helix transcription factor sharp-1 regulates recruitment of the histone methyltransferase G9a and function in myogenesis. J Biol Chem 288(24):17654–17662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warby SC, Chan EY, Metzler M, Gan L, Singaraja RR, Crocker SF, Robertson HA, Hayden MR (2005) Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum Mol Genet 14(11):1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, Dundr M, Garcia BA, Daujat S, Schneider R (2010) Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics & Chromatin 3(1):7

    Article  Google Scholar 

  • Xu C, Jin J, Bian C, Lam R, Tian R, Weist R, You L, Nie J, Bochkarev A, Tempel W, Tan CS, Wasney GA, Vedadi M, Gish GD, Arrowsmith CH, Pawson T, Yang XJ, Min J (2012) Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock. Sci Signal 5(226):ra39

    Google Scholar 

  • Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L, Orban PC, Mullard A, Cowan CM, Raymond LA, Drisdel RC, Green WN, Ravikumar B, Rubinsztein DC, El-Husseini A, Hayden MR (2006) Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 9(6):824–831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR (2012) Putting proteins in their place: palmitoylation in huntington disease and other neuropsychiatric diseases. Prog Neurobiol 97(2):220–238

    Article  CAS  PubMed  Google Scholar 

  • Zahnd C, Pecorari F, Straumann N, Wyler E, Pluckthun A (2006) Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J Biol Chem 281(46):35167–35175

    Article  CAS  PubMed  Google Scholar 

URLs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Collins .

Editor information

Editors and Affiliations

Appendix: Abbreviations Used in Table  5.1

Appendix: Abbreviations Used in Table  5.1

CLIP4 :

CAP–Gly domain-containing linker protein 4; restin-like protein 2

GABP2 :

GA-binding protein subunit beta-2

GABP1 :

GA-binding protein subunit beta-1; transcription factor E4TF1-47

ANR55 :

Ankyrin-repeat domain-containing protein 55

EHMT2 :

Euchromatic histone-lysine N-methyltransferase 2, G9a, KMT1C

EHMT1 :

Euchromatic histone-lysine N-methyltransferase 1; G9a-like protein; KMT1D

ASB8 :

Ankyrin repeats and Socs box 8

ASB7 :

Ankyrin repeat and Socs box 8

ANKMY :

Ankyrin-repeat and MYND domain-containing protein 2

ANR50 :

Ankyrin-repeat domain-containing protein 50

ANS1B :

Ankyrin-repeat and sterile alpha motif domain-containing protein 1B; amyloid-beta protein intracellular domain-associated protein (AIDA-1)

CSK1l :

Caskin-1 (CASK-interacting protein 1)

BTBDB :

Ankyrin-repeat and BTB/POZ domain-containing protein; BTBD11

ANKS3 :

Ankyrin-repeat and SAM domain-containing protein 3

TNI3   K :

Serine/threonine-protein kinase TNNI3K, cardiac ankyrin-repeat kinase (CARK)(.1and .2 designate the first and second cage containing ankyrin repeats of the same protein)

TANC1 :

TPR domain, ankyrin-repeat, and coiled-coil-containing 1, rolling pebbles homolog B

TANC2 :

TPR domain, ankyrin-repeat, and coiled-coil-containing 2 (J3KRP9)

TRPA1 :

Transient receptor potential cation channel subfamily A member 1

USH1G :

Usher syndrome type-1G protein; scaffold protein containing ankyrin repeats and SAM domain (SANS)

HARP :

Ankyrin-repeat and SAM domain-containing protein 4B; harmonin-interacting ankyrin-repeat-containing protein

KRIT1 :

Krev interaction trapped protein 1, cerebral cavernous malformations 1 protein

ASB6 :

Ankyrin-repeat and SOCS box protein 6

SARP2 :

Several ankyrin-repeat protein transcript variant 2

ANR10 :

Ankyrin-repeat domain-containing protein 10

TNKS1 :

Tankyrase-1, ADP-ribosyltransferase diphtheria toxin-like 5, Poly [ADP-ribose] polymerase 5A

KIDINS220L :

highly similar to kinase D-interacting substance of 220   kDa

HIP14 :

Huntingtin-interacting protein 14, palmitoyltransferase ZDHHC

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Collins, R.E., Cheng, X. (2015). Methyl-Lysine Recognition by Ankyrin-Repeat Proteins . In: Zhou, MM. (eds) Histone Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-18102-8_5

Download citation

Publish with us

Policies and ethics