Advertisement

Biomaterials-Based Strategies in Blood Substitutes

  • Anirban Sen Gupta
Chapter

Abstract

Blood is responsible for providing tissues with nutrients via plasma and also transporting cellular components for gas exchange, immune surveillance, and hemostatic responses. Blood transfusion is a clinical mainstay in the management of bleeding complications and congenital blood disorders. Therefore, there is a high clinical emphasis on blood donation and refinement of the collection, storage, and transport strategies of natural blood products. However, these products are often short in supply, require meticulous antigen matching, and pose risks of pathological contamination and biologic side effects. Consequently, there is significant clinical interest in synthetic blood substitutes. To this end, biomaterials provide unique ways of designing blood cell mimics and plasma substitutes. In parallel to synthetic blood substitutes, currently research is also being focused on generating blood cells from stem cells. This chapter provides a comprehensive discussion of the various blood product designs highlighting the biomaterials-based applications and approaches in this field.

Keywords

Biomaterials Synthetic blood substitutes RBCs WBCs Platelets Biomimicry Oxygen carriers Synthetic hemostats Plasma substitutes Hematopoietic stem cells 

References

  1. 1.
    Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif Organs. 2009;33:139–45.CrossRefGoogle Scholar
  2. 2.
    Modery-Pawlowski CL, Tian LL, Pan V, Sen Gupta A. Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromolecules. 2013;14:939–48.CrossRefGoogle Scholar
  3. 3.
    Mohanty D. Current concepts in platelet transfusion. Asian J Transfus Sci. 2009;3:18–21.CrossRefGoogle Scholar
  4. 4.
    Lee D, Blajchman MA. Novel treatment modalities: new platelet preparations and substitutes. Br J Haematol. 2001;114:496–505.CrossRefGoogle Scholar
  5. 5.
    Modery-Pawlowski CL, Tian LL, Pan V, McCrae KR, Mitragotri S, Sen Gupta A. Approaches to synthetic platelet analogs. Biomaterials. 2013;34:526–41.CrossRefGoogle Scholar
  6. 6.
    Hess JR. An update on solutions for red cell storage. Vox Sang. 2006;91:13–9.CrossRefGoogle Scholar
  7. 7.
    Hillyer CD. Blood banking and transfusion medicine. Philadelphia: Churchill Livingstone Elsevier; 2007.Google Scholar
  8. 8.
    Smith JW, Gilcher RO. Red blood cells, plasma, and other new apheresis-derived blood products: improving product quality and donor utilization. Transfus Med Rev. 1999;13:118–23.CrossRefGoogle Scholar
  9. 9.
    Corash L. Inactivation of viruses, bacteria, protozoa, and leukocytes in platelet concentrates: current research perspectives. Transfus Med Rev. 1999;13:18–30.CrossRefGoogle Scholar
  10. 10.
    Carson JL, Hill S, Carless P, Hébert P, Henry D. Transfusion triggers: a systematic review of the literature. Transfus Med Rev. 2002;16:187–99.CrossRefGoogle Scholar
  11. 11.
    Solheim BG. Pathogen reduction of blood components. Transfus Apher Sci. 2008;39:75–82.CrossRefGoogle Scholar
  12. 12.
    Seghatchian J, de Sousa G. Pathogen-reduction systems for blood components: the current position and future trends. Transfus Apher Sci. 2006;35:189–96.CrossRefGoogle Scholar
  13. 13.
    Giangrande PLF. The history of blood transfusion. Br J Haematol. 2000;110:758–67.CrossRefGoogle Scholar
  14. 14.
    Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299:2304–12.CrossRefGoogle Scholar
  15. 15.
    Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol. 2008;22:633–48.CrossRefGoogle Scholar
  16. 16.
    Umbreit J. Methemoglobin—It’s not just blue: a concise review. Am J Hematol. 2007;144:134–44.CrossRefGoogle Scholar
  17. 17.
    Dorman SC, Kenny CF, Miller L, Hirsch RE, Harrington JP. Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components. Artif Cells Blood Substit Immobil Biotechnol. 2002;30:39–51.CrossRefGoogle Scholar
  18. 18.
    Chang TMS. Blood substitutes based on nanobiotechnology. Trends Biotechnol. 2006;24:372–77.CrossRefGoogle Scholar
  19. 19.
    Winslow RM. Red cell substitutes. Semin Hematol. 2007;44:51–59.CrossRefGoogle Scholar
  20. 20.
    Squires JE. Artificial blood. Science. 2002;295:1002–5.CrossRefGoogle Scholar
  21. 21.
    Buehler PW, D’Agnillo F, Schaer DJ. Hemoglobin-based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol Med. 2010;16:447–57.CrossRefGoogle Scholar
  22. 22.
    Winslow RM. Cell-free oxygen carriers: scientific foundations, clinical development, and new directions. Biochim Biophys Acta. 2008;1784:1382–6.CrossRefGoogle Scholar
  23. 23.
    Rioux F, Drapeau G, Marceau F. Recombinant human hemoglobin (rHb1.1) selectively inhibits vasorelaxation elicited by nitric oxide donors in rabbit isolated aortic rings. J Cardiovasc Pharmacol. 1995;25:587–94.CrossRefGoogle Scholar
  24. 24.
    Stowell CP, Levin J, Spiess BD, Winslow RM. Progress in the development of RBC substitutes. Transfusion. 2001;41:287–99.CrossRefGoogle Scholar
  25. 25.
    Sloan EP, Koenigsberg MD, Philbin NB, Gao W. DCLHb Traumatic Hemorrhagic Shock Study Group. European HOST Investigators. Diaspirin cross-linked hemoglobin infusion did not influence base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation. J Trauma. 2010;68:1158–71.CrossRefGoogle Scholar
  26. 26.
    Gould SA, Moore EE, Hoyt DB, Burch JM, Haenel JB, Garcia J, DeWoskin R, Moss GS. The first randomized trial of human polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery. J Am Coll Surg. 1998;187:113–20.CrossRefGoogle Scholar
  27. 27.
    Jahr JS, Moallempour M, Lim JC. HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation). Expert Opin Biol Ther. 2008;8:1425–33.CrossRefGoogle Scholar
  28. 28.
    Cheng DC, Mazer CD, Martineau R, Ralph-Edwards A, Karski J, Robblee J, Finegan B, Hall RI, Latimer R, Vuylsteke A. A phase II dose-response study of hemoglobin raffimer (Hemolink) in elective coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2004;127:79–86.CrossRefGoogle Scholar
  29. 29.
    Vandegriff KD, Winslow RM. Hemospan: design principles for a new class of oxygen therapeutic. Artif Organs. 2009;33:133–8.CrossRefGoogle Scholar
  30. 30.
    Simoni J, Simoni G, Moeller JF, Feola M, Wesson DE. Artificial oxygen carrier with pharmacologic actions of adenosine-5'-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions. Artif Organs. 2014;38:684–90.CrossRefGoogle Scholar
  31. 31.
    Kinasewitz GT, Privalle CT, Imm A, Steingrub JS, Malcynski JT, Balk RA, DeAngelo J. Multicenter, randomized, placebo-controlled study of the nitric oxide scavenger pyridoxalated hemoglobin polyoxyethylene in distributive shock. Crit Care Med. 2008;36:1999–2007.CrossRefGoogle Scholar
  32. 32.
    Varnado CL, Mollan TL, Birukou I, Smith BJ, Henderson DP, Olson JS. Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal. 2013;18:2314–28.CrossRefGoogle Scholar
  33. 33.
    Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Hemoglobin-vesicle, a cellular artificial oxygen carrier that fulfils the physiological roles of the red blood cell structure. Adv Exp Med Biol. 2010;662:433–8.CrossRefGoogle Scholar
  34. 34.
    Kaneda S, Ishizuka T, Goto H, Kimura T, Inaba K, Kasukawa H. Liposome-encapsulated hemoglobin, TRM-645: current status of the development and important issues for clinical application. Artif Organs. 2009;33:146–52.CrossRefGoogle Scholar
  35. 35.
    Rameez S, Alosta H, Palmer AF. Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier. Bioconjug Chem. 2008;19:1025–32.CrossRefGoogle Scholar
  36. 36.
    Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Xu F. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med. 2009;20:1881–91.CrossRefGoogle Scholar
  37. 37.
    Duan L, Yan X, Wang A, Jia Y, Li J. Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano. 2012;6:6897–904.CrossRefGoogle Scholar
  38. 38.
    Xiong Y, Liu ZZ, Georgieva R, Smuda K, Steffen A, Sendeski M, Voigt A, Patzak A, Bäumler H. Nonvasoconstrictive hemoglobin particles as oxygen carriers. ACS Nano. 2013;7:7454–61.CrossRefGoogle Scholar
  39. 39.
    Chang TM, Powanda D, Yu WP. Analysis of polyethylene-glycol-polylactide nano-dimension artificial red blood cells in maintaining systemic hemoglobin levels and prevention of methemoglobin formation. Artif Cells Blood Substit Immobil Biotechnol. 2003;31:231–47.CrossRefGoogle Scholar
  40. 40.
    Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug Chem. 2009;20:1419–40.CrossRefGoogle Scholar
  41. 41.
    Collman JP, Brauman JI, Rose E, Suslick KS. Cooperativity in O2 binding to iron porphyrins. Proc Natl Acad Sci U S A. 1978;75:1052–5.CrossRefGoogle Scholar
  42. 42.
    Kano K, Kitagishi H. HemoCD as an artificial oxygen carrier: oxygen binding and autoxidation. Artif Organs. 2009;33:177–82.CrossRefGoogle Scholar
  43. 43.
    Freire MG, Gomes L, Santos LM, Marrucho IM, Coutinho JA. Water solubility in linear fluoroalkanes used in blood substitute formulations. J Phys Chem B. 2006;110:22923–9.CrossRefGoogle Scholar
  44. 44.
    Gould SA, Rosen AL, Sehgal LR, Sehgal HL, Langdale LA, Krause LM, Rice CL, Chamberlin WH, Moss GS. Fluosol-DA as a red-cell substitute in acute anemia. N Engl J Med. 1986;314:1653–6.CrossRefGoogle Scholar
  45. 45.
    Riess JG. Perfluorocarbon-based oxygen delivery. Artif Cells Blood Substit Immobil Biotechnol. 2006;34:567–80.CrossRefGoogle Scholar
  46. 46.
    Wang X, Gao W, Peng W, Xie J, Li Y. Biorheological properties of reconstructed erythrocytes and its function of carrying-releasing oxygen. Artif Cells Blood Substit Immobil Biotechnol. 2009;37:41–4.CrossRefGoogle Scholar
  47. 47.
    Goldsmith HL, Marlow J. Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc R Soc Lond B. 1972;182:351–84.CrossRefGoogle Scholar
  48. 48.
    Charoenphol P, Mocherla S, Bouis D, Namdee K, Pinsky DJ, Eniola-Adefeso O. Targeting therapeutics to the vascular wall in atherosclerosis–carrier size matters. Atherosclerosis. 2011;217:364–70.CrossRefGoogle Scholar
  49. 49.
    Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A. 2009;106:21495–9.CrossRefGoogle Scholar
  50. 50.
    Haghgooie R, Toner M, Doyle PS. Squishy non-spherical hydrogel microparticles. Macromol Rapid Commun. 2010;31:128–34.Google Scholar
  51. 51.
    Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, Luft JC, Wu H, Zamboni WC, Wang AZ, Bear JE, DeSimone JM. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci U S A. 2011;108:586–91.CrossRefGoogle Scholar
  52. 52.
    Li S, Nickels J, Palmer AF. Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials. 2005;26:3759–69.CrossRefGoogle Scholar
  53. 53.
    Xu F, Yuan Y, Shan X, Liu C, Tao X, Sheng Y, Zhou H. Long-circulation of hemoglobin-loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. Int J Pharm. 2009;377:199–206.CrossRefGoogle Scholar
  54. 54.
    Douay L, Andreu G. Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion? Transfus Med Rev. 2007;21:91–100.CrossRefGoogle Scholar
  55. 55.
    Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical challenges ahead? Biotechnol J. 2014;9:28–38.CrossRefGoogle Scholar
  56. 56.
    Hoffman M, Monroe DM III. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.Google Scholar
  57. 57.
    Heal JM, Blumberg N. Optimizing platelet transfusion therapy. Blood Rev. 2004;18:149–65.CrossRefGoogle Scholar
  58. 58.
    Rubella P. Revisitation of the clinical indications for the transfusion of platelet concentrates. Rev Clin Exp Hematol. 2001;5:288–310.CrossRefGoogle Scholar
  59. 59.
    Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60:S3–11.CrossRefGoogle Scholar
  60. 60.
    Murphy S. Platelet storage for transfusion. Semin Hematol. 1985;22:165–77.Google Scholar
  61. 61.
    Liumbruno G, Bennardello F, Lattanzio A, Piccoli P, Rossetti G. Recommendations for the transfusion of plasma and platelets. Blood Transfus. 2009;7:132–50.Google Scholar
  62. 62.
    Janetzko K, Hinz K, Marschner S, Goodrich R, Klüter H. Pathogen reduction technology (Mirasol® ) treated single-donor platelets resuspended in a mixture of autologous plasma and PAS. Vox Sanguinis. 2009;97(3):234–39.CrossRefGoogle Scholar
  63. 63.
    Schreiber GB, Busch MP, Kleinman SH, Korelitz JJ. The risk of transfusion- transmitted viral infections. The retrovirus epidemiology donor study. N Engl J Med. 1996;334:1685–90.CrossRefGoogle Scholar
  64. 64.
    Blajchman MA. Substitutes for success. Nat Med. 1999;5:17–18.CrossRefGoogle Scholar
  65. 65.
    Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res. 2007;100:1673–85.CrossRefGoogle Scholar
  66. 66.
    Rybak ME, Renzulli LA. A liposome based platelet substitute, the plateletsome, with hemostatic efficacy. Biomater Artif Cells Immobil Biotechnol. 1993;21:101–18.Google Scholar
  67. 67.
    Takeoka S, Teramura Y, Okamura Y, Tsuchida E, Handa M, Ikeda Y. Rolling properties of rGPIbalpha-conjugated phospholipid vesicles with different membrane flexibilities on vWf surface under flow conditions. Biochem Biophys Res Commun. 2002;296:765–70.CrossRefGoogle Scholar
  68. 68.
    Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y. Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ib alpha under flow conditions: specific synergy of receptor-ligand interactions. Blood. 2002;100:136–42.CrossRefGoogle Scholar
  69. 69.
    Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y. Platelet interactions with liposomes carrying recombinant platelet membrane glycoproteins or fibrinogen: approach to platelet substitutes. Artif Cells Blood Substit Immobil Biotechnol. 2001;29:453–64.CrossRefGoogle Scholar
  70. 70.
    Ravikumar M, Modery CL, Wong TL, Sen Gupta A. Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes. Bioconjug Chem. 2012;23:1266–75.CrossRefGoogle Scholar
  71. 71.
    Haji-Valizadeh H1, Modery-Pawlowski CL, Sen Gupta A. A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets. Nanoscale. 2014;6:4765–73.CrossRefGoogle Scholar
  72. 72.
    Pytela R, Piersbacher MD, Ginsberg MH, Plow EF, Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-specific adhesion receptors. Science. 1986;231:1559–62.CrossRefGoogle Scholar
  73. 73.
    Plow EF, D’Souza SE, Ginsberg MH. Ligand binding to GPIIb-IIIa: a status report. Semin Thromb Hemost. 1992;18:324–32.CrossRefGoogle Scholar
  74. 74.
    Coller BS, Springer KT, Beer JH, Mohandas N, Scudder LE, Norton KJ, West SM. Thromboerythrocytes. In vitro studies of a potential autologous, semi-artificial alternative to platelet transfusions. J Clin Invest. 1992;89:546–55.CrossRefGoogle Scholar
  75. 75.
    Levi M, Friederich PW, Middleton S, de Groot PG, Wu YP, Harris R, Biemond BJ, Heijnen HF, Levin J, ten Cate JW. Fibrinogen-coated albumin microcapsules reduce bleeding in severely thrombocytopenic rabbits. Nat Med. 1999;5:107–11.CrossRefGoogle Scholar
  76. 76.
    Okamura Y, Takeoka S, Teramura Y, Maruyama H, Tsuchida E, Handa M, Ikeda Y. Hemostatic effects of fibrinogen gamma-chain dodecapeptide-conjugated polymerized albumin particles in vitro and in vivo. Transfusion. 2005;45:1221–28.CrossRefGoogle Scholar
  77. 77.
    Bertram JP, Williams CA, Robinson R, Segal SS, Flynn NT, Lavik EB. Intravenous hemostat: nanotechnology to halt bleeding. Sci Transl Med. 2009;1:11–22.Google Scholar
  78. 78.
    Gelderman MP, Vostal JG. Current and future cellular transfusion products. Clin Lab Med. 2010;30:443–52.CrossRefGoogle Scholar
  79. 79.
    Brown AC, Stabenfeldt SE, Ahn B, Hannan RT, Dhada KS, Herman ES, Stefanelli V, Guzzetta N, Alexeev A, Lam WA, Lyon LA, Barker TH. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater. Epub ahead of print; 2014 doi:10.1038/nmat4066.Google Scholar
  80. 80.
    Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, Hall CS, Gaffney PJ, Wickline SA, Lanza GM. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med. 2000;44:867–72.CrossRefGoogle Scholar
  81. 81.
    Ravikumar M, Modery CL, Wong TL, Sen Gupta A. Peptide-decorated Liposomes Promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro. Biomacromolecules. 2012;13:1495–502.CrossRefGoogle Scholar
  82. 82.
    Lashof-Sullivan MM, Shoffstall E, Atkins KT, Keane N, Bir C, VandeVord P, Lavik EB. Intravenously administered nanoparticles increase survival following blast trauma. Proc Natl Acad Sci U S A. 2014;111:10293–98.CrossRefGoogle Scholar
  83. 83.
    Cheng S, Craig WS, Mullen D, Tschopp JF, Dixon D, Piersbacher MD. Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin αIIbβ3 antagonists. J Med Chem. 1994;79:659–67.Google Scholar
  84. 84.
    Okamura Y, Fukui Y, Kabata K, Suzuki H, Handa M, Ikeda Y, Takeoka S. Novel platelet substitutes: disk-shaped biodegradable nanosheets and their enhanced effects on platelet aggregation. Bioconjug Chem. 2009;20:1958–65.CrossRefGoogle Scholar
  85. 85.
    Okamura Y, Handa M, Suzuki H, Ikeda Y, Takeoka S. New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma-chain dodecapeptide- or glycoprotein Ibalpha-conjugated latex beads under flow conditions. J Artif Organs. 2006;9:251–58.CrossRefGoogle Scholar
  86. 86.
    Modery-Pawlowski CL, Tian LL, Ravikumar M, Wong TL, Sen Gupta A. In vitro and in vivo hemostatic capabilities of a functionally integrated platelet-mimetic liposomal nanoconstruct. Biomaterials. 2013;34:3031–41.CrossRefGoogle Scholar
  87. 87.
    Al Momani T, Udaykumar HS, Marshall JS, Chandran KB. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow. Ann Biomed Eng. 2008;36:905–20.CrossRefGoogle Scholar
  88. 88.
    Tokarev AA, Butylin AA, Ermakova EA, Shnol EE, Panasenko GP, Ataullakhanov FI. Finite platelet size could be responsible for platelet margination effect. Biophys J. 2011;101:1835–43.CrossRefGoogle Scholar
  89. 89.
    Doshi N, Orje JN, Molins B, Smith JW, Mitragorti S, Ruggeri ZM. Platelet mimetic particles for targeting thrombi inflowing blood. Adv Mater. 2012;24:3864–69.CrossRefGoogle Scholar
  90. 90.
    Anselmo AC, Modery-Pawlowski CL, Menegatti S, Kumar S, Vogus DR, Tian LL, Chen M, Squires TM, Sen Gupta A, Mitragotri S. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano. Epub ahead of print; 2014.Google Scholar
  91. 91.
    Avanzi MP, Mitchell WB. Ex vivo production of platelets from stem cells. Br J Haematol. 2014;165:237–47.CrossRefGoogle Scholar
  92. 92.
    Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita K, Koike T, Harimoto K, Dohda T, Watanabe A, Okita K, Takahashi N, Sawaguchi A, Yamanaka S, Nakauchi H, Nishimura S, Eto K. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14:535–48.CrossRefGoogle Scholar
  93. 93.
    Thon JN, Mazutis L, Wu S, Sylman JL, Ehrlicher A, Machlus KR, Feng Q, Lu S, Lanza R, Neeves KB, Weitz DA, Italiano JE Jr. Platelet bioreactor-on-a-chip. Blood. Epub ahead of print; 2014.Google Scholar
  94. 94.
    Swartz MA, Hirosue S, Hubbell JA. Engineering approaches to immunotherapy. Sci Transl Med. 2012;4:148rv9.Google Scholar
  95. 95.
    Hammer DA, Robbins GP, Haun JB, Lin JJ, Qi W, Smith LA, Ghoroghchian PP, Therien MJ, Bates FS. Leuko-polymersomes. Faraday Discuss. 2008;139:129–41.CrossRefGoogle Scholar
  96. 96.
    Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8:61–8.CrossRefGoogle Scholar
  97. 97.
    Booth C, Highley D. Crystalloids, colloids, blood, blood products and blood substitutes. Anaesth Intensive Care Med. 2010;11:50–5.CrossRefGoogle Scholar
  98. 98.
    McCahon R, Hardman J. Pharmacology of plasma expanders. Anaesth Intensive Care Med. 2007;8:79–81.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations