Adaptive Choice and Resampling Techniques in Extremal Index Estimation

  • Dora Prata GomesEmail author
  • M. Manuela Neves
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 136)


This work deals with the application of resampling techniques together with the adaptive choice of a ‘tuning’ parameter, the block size, \(b\), to be used in the bootstrap estimation of the extremal index, that is a key parameter in extreme value theory in a dependent setup. Its estimation has been considered by many authors but some challenges still remain. One of these is the choice of the number of upper order statistics to be considered in the semiparametric estimation. Block-bootstrap and Jackknife-After-Bootstrap are two computational procedures applied here for improving the behavior of the extremal index estimators through an adaptive choice of the block size for the resampling procedure. A few results of a simulation study will be presented.


Adaptive choice Block size External index Exterme value theory Resampling techniques 



Research partially supported by National Funds through FCT – Fundação para a Ciência e a Tecnologia, project PEst-OE/MAT/UI0006/2014 (CEAUL) and PEst-OE/MAT/ UI0297/2014 (CMA/UNL) and UID/MAT/00297/2013 (Centro de Matemática e Aplicações).


  1. 1.
    Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., Waal, D., Ferro, C.: Statistics of Extremes: Theory and Applications. Wiley, New York (2004)Google Scholar
  2. 2.
    Bühlmann, P., Künsch, H.: Block length selection in the bootstrap for time series. J. Comput. Stat. Data Anal. 31, 295–310 (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Davison, A.: Statistics of Extremes. Courses 2011–2012. École Polytechnique Fédérale de Lausanne EPFL (2011)Google Scholar
  4. 4.
    Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Efron, B.: Jackknife-after-boostrap standard errors and influence functions (with discussions). J. Roy. Stat. Ser. B 54, 83–111 (1992)Google Scholar
  6. 6.
    Gomes, M.I.: Statistical inference in an extremal Markovian model. COMPSTAT 257–262 (1990)Google Scholar
  7. 7.
    Gomes, M.I.: Modelos extremais em esquemas de dependência. I Congresso Ibero-Americano de Esdadistica e Investigacion Operativa, 209–220 (1992)Google Scholar
  8. 8.
    Gomes, M.I.: On the estimation of parameters of rare events in environmental time series. Statistics for the Environment, Barnett et al. (eds.), 226–241 (1993)Google Scholar
  9. 9.
    Gomes, M.I., Hall, A., Miranda, C.: Subsampling techniques and the Jackknife methodology in the estimation of the extremal index. J. Comput. Stat. Data Anal. 52(4), 2022–2041 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gomes, M.I., Figueiredo, F., Neves, M.M.: Adaptive estimation of heavy right tails: resampling-based methods in action. Extremes 15, 463–489 (2012)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hall, P., Horowitz, J.L., Jing, B.-Y.: On blocking rules for the bootstrap with dependent data. Biometrika 50, 561–574 (1995)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hsing, T.: Estimating the parameters of rare events. Stoch. Proc. Appl. 37, 117–139 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hsing, T.: Extremal index estimation for a weakly dependent stationary sequence. Ann. Stat. 21, 2043–2071 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hsing, J.T., Hüsler, J., Leadbetter, M.R.: On the exceedance point process for a stationary sequence. Probab. Theory Relat. Fields 78(1), 97–112 (1988)CrossRefzbMATHGoogle Scholar
  15. 15.
    Künsch, H.: The jackknife and the bootstrap for general stationary observations. Ann. Math. 17, 1217–1241 (1989)zbMATHGoogle Scholar
  16. 16.
    Lahiri, S.: Theoretical comparisons of block bootstrap methods. Ann. Stat. 27, 386–404 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lahiri, S.: On the jackknife after bootstrap method for dependent data and its consistency properties. Econom. Theory 18, 79–98 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lahiri, S., Furukawa, K., Lee, Y.-D.: Nonparametric plug-in method for selecting the optimal block lengths. Stat. Methodol. 4, 292–321 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete 65(2), 291–306 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Leadbetter, M.R., Nandagopalan, L.: On exceedance point process for stationary sequences under mild oscillation restrictions. In: Hüsler, J., Reiss, R.D. (eds.) Extreme Value Theory: Proceedings, Oberwolfach 1987. Lecture Notes in Statistics, vol. 52, pp. 69-80. Springer, Berlin (1989)Google Scholar
  21. 21.
    Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Series. Springer, New York (1983)CrossRefGoogle Scholar
  22. 22.
    Loynes, R.M.: Extremes values in uniformly mixing stationary stochastic processes. Ann. Math. Stat. 36(3), 993–999 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Nandagopalan, S.: Multivariate extremes and estimation of the extremal index. Ph.D Thesis, University of North Carolina, Chapel Hill (1990)Google Scholar
  24. 24.
    Newell, G.: Asymptotic extremes for m-dependent random variables. Ann. Math. Stat. 35, 1322–1325 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    O’Brien, G.: The maximum term of uniformly mixing stationary processes. Z. Wahrsch. Verw. Gebiete 30, 57–63 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    O’Brien, G.: Extreme values for stationary and Markov sequences. Ann. Probab. 15(1), 281–289 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Prata Gomes, D., Neves, M.M.: Resampling methodologies and the estimation of parameters of rare events. In: Proceedings of the AIP Conference on Numerical Analysis and Applied Mathematics. 1389, (ICNAAM 2011). 1475–1478 (2011)Google Scholar
  28. 28.
    Prata Gomes, D., Neves, M.M.: Bootstrap and other resampling methodologies in statistics of extremes. Accepted (2013)Google Scholar
  29. 29.
    Singh, K.: On the asymptotic accuracy of the Efron’s bootstrap. Ann. Stat. 9, 345–362 (1981)Google Scholar
  30. 30.
    Smith, R., Weissman, I.: Estimating the extremal index. J. R. Stat. Soc. B 56, 515–528 (1994)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Weissman, I., Novak, S.: On blocks and runs estimators of the extremal index. J. Stat. Plan. Inference 66, 281–288 (1998)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CMA and FCTUniversidade Nova de LisboaCaparicaPortugal
  2. 2.CEAUL and ISAUniversidade de LisboaLisbonPortugal

Personalised recommendations