Skip to main content

Risk Assessment of Complex Evolving Systems Involving Multiple Inputs

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 136))

Abstract

When monitoring complex evolving systems a question that often arises is to detect causal chains of events. Do particular inputs force the system to produce new events or prohibits them? This can be also considered as a risk assessment for the systems response. In this work we present two methods of estimating the effect of multiple inputs on a complex neurophysiological system. Both the response and the stimuli are very long binary time series. The first approach is a non-parametric one and describes the linear and the non-linear association of the stationary point processes by estimating the second- and third-order cumulant density functions. The second approach is a parametric one and the association between the inputs and the response of the system is described by a logistic regression model which takes into account the system’s internal processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The word ‘stochastic’ is implied.

References

  1. Boyd, I.A.: The isolated mammalian muscle spindle. Trends Neurosci. 3(11), 258–265 (1980)

    Article  Google Scholar 

  2. Brillinger, D.R.: Estimation of product densities. In: Frane, J.W. (ed.) Computer Science and Statistics: 8th Annual Symposium, pp. 431–438. Los Angeles, U.C.L.A. (1975)

    Google Scholar 

  3. Brillinger, D.R.: Confidence intervals for the crosscovariance function. Selecta Statistica Canadiana 5, 3–16 (1979)

    Google Scholar 

  4. Brillinger, D.R.: Nerve cell spike train data analysis: a progression of technique. JASA 87(418), 260–271 (1992)

    Article  Google Scholar 

  5. Brillinger, D.R.: Time Series: Data Analysis and Theory, vol. 36. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  6. Brillinger, D.R.: Some statistical methods for random process data from seismology and neurophysiology. In: Guttorp, P., Brillinger, D. (eds.) Selected Works of David Brillinger, Selected Works in Probability and Statistics, pp. 89–142. Springer, New York (2012)

    Chapter  Google Scholar 

  7. Cox, D.R., Lewis, P.A.W.: The Statistical Analysis of Series of Events. Wiley, London (1966)

    Book  MATH  Google Scholar 

  8. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure. Springer, New York (2007)

    Google Scholar 

  9. Dobson, A.J., Barnett, A.J.: An Introduction to Generalized Linear Model, 3rd edn. CRC Press, Boca Raton (2008)

    Google Scholar 

  10. Dunn, P.K., Smyth, G.K.: Randomized quantile residuals. J. Comput. Graph. Stat. 5(3), 236–244 (1996)

    Google Scholar 

  11. Firth, D.: Bias reduction, the Jeffreys prior and GLIM. Advances in GLIM and Statistical Modelling, pp. 91–100. Springer, New York (1992)

    Chapter  Google Scholar 

  12. Firth, D.: Generalized linear models and Jeffreys priors: an iterative weighted least-squares approach. In: Dodge, Y., Whittaker, J. (eds.) Computational Statistics, vol. 1, pp. 553–557. Physica-Verlag, Heidelberg (1992)

    Chapter  Google Scholar 

  13. Firth, D.: Bias reduction of maximum likelihood estimates. Biometrika 80(1), 27–38 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hardin, J.W., Hilbe, J.: Generalized Linear Models and Extensions. Stata Press, College Station (2007)

    MATH  Google Scholar 

  15. Heinze, G., Ploner, M.: A SAS macro, S-plus library and r package to perform logistic regression without convergence problems. Technical report 2/2004, Medical University of Vienna, Vienna (2004)

    Google Scholar 

  16. Heinze, G., Schemper, M.: A solution to the problem of separation in logistic regression. Stat. Med. 21(16), 2409–2419 (2002)

    Article  Google Scholar 

  17. Holden, A.V.: Models of the Stochastic Activity of Neurones. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  18. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. R. Soc. A 186(1007), 453–461 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karavasilis, G.J., Kotti, V.K., Tsitsis, D.S., Vassiliadis, V.G., Rigas, A.G.: Statistical methods and software for risk assessment: applications to a neurophysiological data set. Comput. Stat. Data Anal. 49(1), 243–263 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kotti, V.K., Rigas, A.G.: Identification of a complex neurophysiological system using the maximum likelihood approach. J. Biol. Syst. 11(02), 189–204 (2003)

    Article  MATH  Google Scholar 

  21. Kotti, V.K., Rigas, A.G.: Logistic regression methods and their implementation. In: Edler, L., Kitsos, C.P. (eds.) Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment, pp. 355–369. Wiley, New York (2005)

    Google Scholar 

  22. Lindsay, K.A., Rosenberg, J.R.: Linear and quadratic models of point process systems: contributions of patterned input to output. Prog. Biophys. Mol. Biol. 109(3), 76–94 (2012)

    Article  Google Scholar 

  23. MacCullagh, P., Nelder, J.A.: Generalized Linear Models, vol. 37, 2nd edn. CRC Press, Boca Raton (1989)

    Book  Google Scholar 

  24. Marmarelis, V.Z.: Nonlinear Dynamic Modeling of Physiological Systems. Wiley-IEEE Press, New York (2004)

    Book  Google Scholar 

  25. Matthews, P.B.C.: Evolving views on the internal operation and functional role of the muscle spindle. J. Physiol. 320, 1–30 (1981)

    Article  MathSciNet  Google Scholar 

  26. Priestley, M.B.: The role of bandwidth in spectral analysis. J. R. Stat. Soc. C 14(1), 33–47 (1965)

    MATH  Google Scholar 

  27. Rigas, A.G.: Spectral analysis of stationary point processes using the fast Fourier transform algorithm. J. Time Ser. Anal. 13(5), 441–450 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tsitsis, D.S., Karavasilis, G.J., Rigas, A.G.: Measuring the association of stationary point processes using spectral analysis techniques. Stat. Methods Appl. 21(1), 23–47 (2012)

    Article  MathSciNet  Google Scholar 

  29. Venzon, D.J., Moolgavkar, S.H.: A method for computing profile-likelihood-based confidence intervals. Appl. Stat. 37, 87–94 (1988)

    Article  Google Scholar 

  30. Windhorst, U.: Muscle proprioceptive feedback and spinal networks. Brain Res. Bull. 73(4), 155–202 (2007)

    Article  Google Scholar 

  31. Zorn, C.: A solution to separation in binary response models. Polit. Anal. 13(2), 157–170 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Rigas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rigas, A.G., Vassiliadis, V.G. (2015). Risk Assessment of Complex Evolving Systems Involving Multiple Inputs. In: Kitsos, C., Oliveira, T., Rigas, A., Gulati, S. (eds) Theory and Practice of Risk Assessment. Springer Proceedings in Mathematics & Statistics, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-319-18029-8_13

Download citation

Publish with us

Policies and ethics