Learning Value Heuristics for Constraint Programming

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9075)

Abstract

Search heuristics are of paramount importance for finding good solutions to optimization problems quickly. Manually designing problem specific search heuristics is a time consuming process and requires expert knowledge from the user. Thus there is great interest in developing autonomous search heuristics which work well for a wide variety of problems. Various autonomous search heuristics already exist, such as first fail, domwdeg and impact based search. However, such heuristics are often more focused on the variable selection, i.e., picking important variables to branch on to make the search tree smaller, rather than the value selection, i.e., ordering the subtrees so that the good subtrees are explored first. In this paper, we define a framework for learning value heuristics, by combining a scoring function, feature selection, and machine learning algorithm. We demonstrate that we can learn value heuristics that perform better than random value heuristics, and for some problem classes, the learned heuristics are comparable in performance to manually designed value heuristics. We also show that value heuristics using features beyond a simple score can be valuable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)CrossRefGoogle Scholar
  2. 2.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference, DAC 2001, pp. 530–535. ACM, Las Vegas, June 18–22, 2001Google Scholar
  3. 3.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, Including Prestigious Applicants of Intelligent Systems, PAIS 2004, pp. 146–150. IOS Press, Valencia (2004)Google Scholar
  4. 4.
    Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  5. 5.
    Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered search heuristics. Constraints 14, 392–413 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, E. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Benichou, M., Gauthier, J., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.: Experiments in mixed-integer programming. Mathematical Programming 1, 76–94 (1971)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Linderoth, J., Savelsbergh, M.: A computational study of search strategies for mixed integer programming. INFORMS Journal of Computing 11 (1999)Google Scholar
  10. 10.
    Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. CoRR abs/1210.7959 (2012)Google Scholar
  11. 11.
    Amemiya, T.: Advanced Econometrics. Harvard University Press (1985)Google Scholar
  12. 12.
    Wold, H.: Estimation of principal components and related models by iterative least squares. In: Multivariate Analysis, pp. 391–420. Academic Press (1966)Google Scholar
  13. 13.
    Chu, G., Stuckey, P.J.: Minimizing the maximum number of open stacks by customer search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 242–257. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Garcia de la Banda, M., Stuckey, P., Chu, G.: Solving talent scheduling with dynamic programming. INFORMS Journal of Computing 23, 120–137 (2011)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propagator. Constraints 16, 250–282 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Miller, H., Pierskalla, W., Rath, G.: Nurse scheduling using mathematical programming. Operations Research, 857–870 (1976)Google Scholar
  18. 18.
    Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving the car-sequencing problem in constraint logic programming. In: ECAI, vol. 88, pp. 290–295 (1988)Google Scholar
  19. 19.
    Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for resource constrained project scheduling. European Journal of Operational Research 127, 394–407 (2000)CrossRefMATHGoogle Scholar
  20. 20.
    Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Savage, L.: The theory of statistical decision. Journal of the American Statistical Association 46 (1951)Google Scholar
  22. 22.
    Allouche, D., de Givry, S., Schiex, T.: Toulbar2, an open source exact cost function network solver. Technical report, INRIA (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.National ICT Australia, Victoria Laboratory, Department of Computing and Information SystemsUniversity of MelbourneMelbourneAustralia

Personalised recommendations