The Smart Table Constraint

  • Jean-Baptiste Mairy
  • Yves Deville
  • Christophe Lecoutre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9075)

Abstract

Table Constraints are very useful for modeling combinatorial problems in Constraint Programming (CP). They are a universal mechanism for representing constraints, but unfortunately the size of their tables can grow exponentially with their arities. In this paper, we propose to authorize entries in tables to contain simple arithmetic constraints, replacing classical tuples of values by so-called smart tuples. Smart table constraints can thus be viewed as logical combinations of those simple arithmetic constraints. This new form of tuples allows us to encode compactly many constraints, including a dozen of well-known global constraints. We show that, under a very reasonable assumption about the acyclicity of smart tuples, a Generalized Arc Consistency algorithm of low time complexity can be devised. Our experimental results demonstrate that the smart table constraint is a highly promising general purpose tool for CP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: IJCAI, pp. 35–40 (2005)Google Scholar
  2. 2.
    Bessiere, C., Régin, J.-C.: Arc consistency for general constraint networks: preliminary results. In: Proceedings of IJCAI 1997, pp. 398–404 (1997)Google Scholar
  3. 3.
    Bessiere, C., Régin, J.-C.: Local consistency on conjunctions of constraints. In: Proceedings of ECAI 1998 Workshop on Non-binary constraints, pp. 53–59 (1998)Google Scholar
  4. 4.
    Carlson, B., Carlsson, M.: Compiling and executing disjunctions of finite domain constraints. In: Proceedings of ICLP 1995, pp. 117–131 (1995)Google Scholar
  5. 5.
    Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 93–108. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  6. 6.
    Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms for lexicographic ordering constraints. Artificial Intelligence 170(10), 803–834 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  8. 8.
    Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc consistency for extensional constraints. In: Proceedings of AAAI 2007, pp. 191–197 (2007)Google Scholar
  9. 9.
    Jefferson, C., Moore, N.C.A., Nightingale, P., Petrie, K.E.: Implementing logical connectives in constraint programming. Artificial Intelligence 174(16), 1407–1429 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jefferson, C., Nightingale, P.: Extending simple tabular reduction with short supports. In: Proceedings of IJCAI 2013, pp. 573–579 (2013)Google Scholar
  11. 11.
    Katsirelos, G., Bacchus, F.: GAC on conjunctions of constraints. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 610–614. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  12. 12.
    Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Lecoutre, C.: Constraint Networks: Techniques and Algorithms. ISTE/Wiley (2009)Google Scholar
  14. 14.
    Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A path-optimal GAC algorithm for table constraints. In: Proceedings of ECAI 2012, pp. 510–515 (2012)Google Scholar
  16. 16.
    Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Lhomme, O.: Arc-consistency filtering algorithms for logical combinations of constraints. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 209–224. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  18. 18.
    Lhomme, O.: Practical reformulations with table constraints. In: Proceedings of ECAI 2012, pp. 911–912 (2012)Google Scholar
  19. 19.
    Lhomme, O., Régin, J.-C.: A fast arc consistency algorithm for n-ary constraints. In: Proceedings of AAAI 2005, pp. 405–410 (2005)Google Scholar
  20. 20.
    Mackworth, A.K., Freuder, E.C.: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artificial intelligence 25(1), 65–74 (1985)CrossRefGoogle Scholar
  21. 21.
    Mairy, J.-B., Van Hentenryck, P., Deville, Y.: Optimal and efficient filtering algorithms for table constraints. Constraints 19(1), 77–120 (2014)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Meseguer, P., Torras, C.: Solving strategies for highly symmetric CSPs. In: Proceedings of IJCAI 1999, pp. 400–405 (1999)Google Scholar
  23. 23.
    Nightingale, P., Gent, I.P., Jefferson, C.A., Miguel, I.J.: Short and long supports for constraint propagation. Journal of Artificial Intelligence Research 46, 1–45 (2013)MATHMathSciNetGoogle Scholar
  24. 24.
    Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  25. 25.
    Régin, J.-C.: Improving the expressiveness of table constraints. In: Proceedings of CP 2011 Workshop on Constraint Modelling and Reformulation (2011)Google Scholar
  26. 26.
    Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  27. 27.
    Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Information Sciences 177(18), 3639–3678 (2007)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and evaluation of the constraint language cc(fd). The Journal of Logic Programming 37(1–3), 139–164 (1998)CrossRefMATHGoogle Scholar
  29. 29.
    Würtz, J., Müller, T.: Constructive disjunction revisited. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 377–386. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  30. 30.
    Xia, W., Yap, R.H.C.: Optimizing STR algorithms with tuple compression. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 724–732. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jean-Baptiste Mairy
    • 1
  • Yves Deville
    • 1
  • Christophe Lecoutre
    • 2
  1. 1.ICTEAMUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.CRIL-CNRS UMR 8188Université d’ArtoisLensFrance

Personalised recommendations