Skip to main content

BDD-Guided Clause Generation

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9075)

Abstract

Nogood learning is a critical component of Boolean satisfiability (SAT) solvers, and increasingly popular in the context of integer programming and constraint programming. We present a generic method to learn valid clauses from exact or approximate binary decision diagrams (BDDs) and resolution in the context of SAT solving. We show that any clause learned from SAT conflict analysis can also be generated using our method, while, in addition, we can generate stronger clauses that cannot be derived from one application of conflict analysis. Importantly, since SAT instances are often too large for an exact BDD representation, we focus on BDD relaxations of polynomial size and show how they can still be used to generated useful clauses. Our experimental results show that when this method is used as a preprocessing step and the generated clauses are appended to the original instance, the size of the search tree for a SAT solver can be significantly reduced.

Keywords

  • Unit Propagation
  • Constraint Programming
  • Binary Decision Diagram
  • Partial Assignment
  • Original Instance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-18008-3_15
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-18008-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimization 4(1), 4–20 (2007)

    MathSciNet  CrossRef  Google Scholar 

  2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and bounded-width resolution. Journal of Artificial Intelligence Research 40, 353–373 (2011)

    MathSciNet  CrossRef  Google Scholar 

  4. Beame, P., Kautz, H., Sabharwal, A.: Understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

    MathSciNet  CrossRef  Google Scholar 

  5. Behle, M.: On threshold BDDs and the optimal variable ordering problem. Journal of Combinatorial Optimization 16, 107–118 (2008)

    MathSciNet  CrossRef  Google Scholar 

  6. Bergman, B., Cire, A., van Hoeve, W.-J., Hooker, J.: Optimization bounds from binary decision diagrams. INFORMS Journal on Computing 26(2), 253–268 (2014)

    MathSciNet  CrossRef  Google Scholar 

  7. Bergman, D., Cire, A.A., van Hoeve, W.-J., Yunes, T.: BDD-based heuristics for binary optimization. Journal of Heuristics 20(2), 211–234 (2014)

    CrossRef  Google Scholar 

  8. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  9. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on Computers 45(9), 993–1002 (1996)

    CrossRef  Google Scholar 

  10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)

    CrossRef  Google Scholar 

  11. Cire, A., van Hoeve, W.-J.: Multivalued decision diagrams for sequencing problems. Operations Research 61(6), 1411–1428 (2013)

    MathSciNet  CrossRef  Google Scholar 

  12. Downing, N., Feydy, T., Stuckey, P.: Explaining flow-based propagation. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 146–162. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  13. Hadzic, T., Hooker, J., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  14. Hoda, S., van Hoeve, W.-J., Hooker, J.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  15. Katsirelos, G.: Nogood Processing in CSPs. PhD thesis, University of Toronto (2008)

    Google Scholar 

  16. Kell, B., van Hoeve, W.-J.: An MDD approach to multidimensional bin packing. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 128–143. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  17. Kilinç-Karzan, F., Nemhauser, G., Savelsbergh, M.: Information-based branching schemes for binary linear mixed integer problems. Mathematical Programming Computation 1(4), 249–293 (2009)

    MathSciNet  CrossRef  Google Scholar 

  18. Knuth, D.E.: The Art of Computer Programming, vol. 4, fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley (2009)

    Google Scholar 

  19. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell System Technical Journal 38(4), 985–999 (1959)

    MathSciNet  CrossRef  Google Scholar 

  20. Marques-Silva, J.P., Lynce, I., Malik, S.: CDCL solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T., (eds.), Handbook of Satisfiability, chapter 4, pp. 131–154. IOS Press (2009)

    Google Scholar 

  21. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints 14, 357–391 (2009)

    MathSciNet  CrossRef  Google Scholar 

  22. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence 175(2), 512–525 (2011)

    MathSciNet  CrossRef  Google Scholar 

  23. SAT Challenge 2012. SAT Challenge 2012: Downloads, November 23, 2014. http://baldur.iti.kit.edu/SAT-Challenge-2012/downloads.html

  24. Stuckey, P.: Lazy clause generation: combining the power of SAT and CP (and MIP?) solving. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 5–9. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  25. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Kell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kell, B., Sabharwal, A., van Hoeve, WJ. (2015). BDD-Guided Clause Generation. In: Michel, L. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science(), vol 9075. Springer, Cham. https://doi.org/10.1007/978-3-319-18008-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18008-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18007-6

  • Online ISBN: 978-3-319-18008-3

  • eBook Packages: Computer ScienceComputer Science (R0)