Enhancing MIP Branching Decisions by Using the Sample Variance of Pseudo Costs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9075)

Abstract

The selection of a good branching variable is crucial for small search trees in Mixed Integer Programming. Most modern solvers employ a strategy guided by history information, mainly the variable pseudo-costs, which are used to estimate the objective gain. At the beginning of the search, such information is usually collected via an expensive look-ahead strategy called strong branching until variables are considered reliable.

The reliability notion is thereby mostly based on fixed-number thresholds, which may lead to ineffective branching decisions on problems with highly varying objective gains.

We suggest two new notions of reliability motivated by mathematical statistics that take into account the sample variance of the past observations on each variable individually. The first method prioritizes additional strong branching look-aheads on variables whose pseudo-costs show a large variance by measuring the relative error of a pseudo-cost confidence interval. The second method performs a specialized version of a two-sample Student’s \(t\)-test for filtering branching candidates with a high probability to be better than the best history candidate.

Both methods were implemented in the MIP-solver SCIP and computational results on standard MIP test sets are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (COIN-OR branch-and-cut MIP solver). https://projects.coin-or.org/Cbc
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    SCIP. Solving Constraint Integer Programs. (http://scip.zib.de/)
  6. 6.
    Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. The Computer Journal 8, 250–255 (1965)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28, 497–520 (1960)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Bénichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribière, G., Vincent, O.: Experiments in mixed-integer programming. Mathematical Programming 1, 76–94 (1971)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS Journal on Computing 11, 173–187 (1999)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: Finding cuts in the TSP (A preliminary report). Technical Report 95–05, DIMACS (1995)Google Scholar
  12. 12.
    Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters 33, 42–54 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. (ed.) Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North Holland, Amsterdam (1981)Google Scholar
  14. 14.
    Gauthier, J.M., Ribière, G.: Experiments in mixed-integer linear programming using pseudo-costs. Mathematical Programming 12, 26–47 (1977)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Gamrath, G.: Improving strong branching by propagation. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 347–354. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Fischetti, M., Monaci, M.: Branching on nonchimerical fractionalities. OR Letters 40, 159–164 (2012)MATHMathSciNetGoogle Scholar
  17. 17.
    Berthold, T., Gamrath, G., Salvagnin, D.: Cloud branching. Presentation slides from Mixed Integer Programming Workshop at Ohio State University (2014). https://mip2014.engineering.osu.edu/sites/mip2014.engineering.osu.edu/files/uploads/Berthold_MIP2014_Cloud.pdf
  18. 18.
    Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)Google Scholar
  19. 19.
    Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming Computation 1, 1–41 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gilpin, A., Sandholm, T.: Information-theoretic approaches to branching in search. Discrete Optimization 8, 147–159 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Kilinç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branching schemes for binary linear mixed integer problems. Mathematical Programming Computation 1(4), 249–293 (2009)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Pryor, J., Chinneck, J.W.: Faster integer-feasibility in mixed-integer linear programs by branching to force change. Computers & Operations Research 38, 1143–1152 (2011)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Fischetti, M., Monaci, M.: Backdoor branching. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 183–191. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  24. 24.
    Roussas, G.G.: A Course in Mathematical Statistics, Third Edition. Elsevier Science & Technology Books (2014)Google Scholar
  25. 25.
    SoPlex. An open source LP solver implementing the revised simplex algorithm. (http://soplex.zib.de/)
  26. 26.
    Danna, E.: Performance variability in mixed integer programming. Presentation slides from MIP workshop in New York City (2008). http://coral.ie.lehigh.edu/ jeff/mip-2008/program.pdf
  27. 27.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Mathematical Programming Computation 3, 103–163 (2011)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.: An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)Google Scholar
  29. 29.
    Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34, 1–12 (2006)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Achterberg, T., Berthold, T., Hendel, G.: Rounding and propagation heuristics for mixed integer programming. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.) Operations Research Proceedings 2011, pp. 71–76. Springer, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Berthold, T.: Measuring the impact of primal heuristics. Operations Research Letters 41, 611–614 (2013)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Konrad Zuse Zentrum für InformationstechnologieBerlinGermany

Personalised recommendations