Skip to main content

Parallel Multiclass Logistic Regression for Classifying Large Scale Image Datasets

  • Conference paper
Advanced Computational Methods for Knowledge Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 358))

Abstract

The new parallel multiclass logistic regression algorithm (PAR-MC-LR) aims at classifying a very large number of images with very-high-dimensional signatures into many classes. We extend the two-class logistic regression algorithm (LR) in several ways to develop the new multiclass LR for efficiently classifying large image datasets into hundreds of classes. We propose the balanced batch stochastic gradient descend of logistic regression (BBatch-LR-SGD) for trainning two-class classifiers used in the one-versus-all strategy of the multiclass problems and the parallel training process of classifiers with several multi-core computers. The numerical test results on ImageNet datasets show that our algorithm is efficient compared to the state-of-the-art linear classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Gool, L.J.V.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Bosch, A., Zisserman, A., Muñoz, X.: Image classification using random forests and ferns. In: International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  4. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  5. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  6. Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)

    Article  Google Scholar 

  7. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Technical Report CNS-TR-2007-001, California Institute of Technology (2007)

    Google Scholar 

  8. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient solver for svm. In: Proceedings of the Twenty-Fourth International Conference Machine Learning, pp. 807–814. ACM (2007)

    Google Scholar 

  10. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. NIPS Foundation (2008), http://books.nips.cc

  11. Ben-Akiva, M., Lerman, S.: Discrete Choice Analysis: Theory and Application to Travel Demand. The MIT Press (1985)

    Google Scholar 

  12. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In: Proceedings of the Seventh European Symposium on Artificial Neural Networks, pp. 219–224 (1999)

    Google Scholar 

  13. Guermeur, Y.: Svm multiclasses, théorie et applications (2007)

    Google Scholar 

  14. Kreßel, U.: Pairwise classification and support vector machines. In: Advances in Kernel Methods: Support Vector Learning, pp. 255–268 (1999)

    Google Scholar 

  15. Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multiclass classification. Advances in Neural Information Processing Systems 12, 547–553 (2000)

    Google Scholar 

  16. Japkowicz, N. (ed.): AAAI’Workshop on Learning from Imbalanced Data Sets. Number WS-00-05 in AAAI Tech. Report (2000)

    Google Scholar 

  17. Weiss, G.M., Provost, F.: Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research 19, 315–354 (2003)

    MATH  Google Scholar 

  18. Visa, S., Ralescu, A.: Issues in mining imbalanced data sets - A review paper. In: Midwest Artificial Intelligence and Cognitive Science Conf., Dayton, USA, pp. 67–73 (2005)

    Google Scholar 

  19. Lenca, P., Lallich, S., Do, T.-N., Pham, N.-K.: A Comparison of Different Off-Centered Entropies to Deal with Class Imbalance for Decision Trees. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 634–643. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Pham, N.K., Do, T.N., Lenca, P., Lallich, S.: Using local node information in decision trees: coupling a local decision rule with an off-centered. In: International Conference on Data Mining, pp. 117–123. CSREA Press, Las Vegas (2008)

    Google Scholar 

  21. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: Improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39(2), 539–550 (2009)

    Article  Google Scholar 

  23. Ricamato, M.T., Marrocco, C., Tortorella, F.: Mcs-based balancing techniques for skewed classes: An empirical comparison. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  24. MPI-Forum: MPI: A message-passing interface standard

    Google Scholar 

  25. OpenMP Architecture Review Board: OpenMP application program interface version 3.0 (2008)

    Google Scholar 

  26. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large linear classification. Journal of Machine Learning Research 9(4), 1871–1874 (2008)

    MATH  Google Scholar 

  27. Franc, V., Sonnenburg, S.: Optimized cutting plane algorithm for large-scale risk minimization. Journal of Machine Learning Research 10, 2157–2192 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3), 480–492 (2012)

    Article  Google Scholar 

  29. Wu, J.: Power mean svm for large scale visual classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2344–2351 (2012)

    Google Scholar 

  30. Berg, A., Deng, J., Li, F.F.: Large scale visual recognition challenge 2010. Technical report (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Nghi Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Do, TN., Poulet, F. (2015). Parallel Multiclass Logistic Regression for Classifying Large Scale Image Datasets. In: Le Thi, H., Nguyen, N., Do, T. (eds) Advanced Computational Methods for Knowledge Engineering. Advances in Intelligent Systems and Computing, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-17996-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17996-4_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17995-7

  • Online ISBN: 978-3-319-17996-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics