Skip to main content

Abstract

Oral Lichen Planus (OLP), a common chronic inflammatory T-cell mediated oral mucocutaneous disease, is a complex oral disease and the management of a complex disorder requires a personalized treatment based on a network approach. Genes involved in different biological processes form complex interaction networks. However, only few of them have a high number of interactions with the other genes in the network and, therefore, they may play a major role.

In previous bioinformatics and experimental studies, these genes were identified and termed as “leader genes”. In the current ab initio theoretical study, genes involved in human OLP pathogenesis are identified and ranked according to their number of interactions, in order to obtain a broader view of its molecular mechanisms and to plan targeted experimentations. Genes involved or potentially involved in OLP were identified by systematically querying several databases until the identification of a final set of genes. Interactions among these genes were mapped and given a significance score using STRING database. For each gene, significance scores were summed to obtain a weighted number of links (WNL) and subsequently genes were clustered according to this parameter. The genes in the highest cluster were termed as leader genes; the other ones were ranked as class B genes, class C genes, and so on. This study was complemented by a topological analysis of the network, carried out using Cytoscape, BinGO and FANMOD software.

Subsequently, in the second part of our study, Class A and Class B genes were used to predict putatively associated microRNAs (miRNAs), exploiting the miRGene database. miRNAs are a family of small and short (usually 19–25 nucleotides long), single-stranded, endogenous, non-coding RNA molecules. They play a key role both in physiology and in pathology, and their role in pathogenesis of oral diseases is emerging. However, despite the importance of incorporating the oral microRNAome in the study of oral disorders, so far only few miRNAs related to them have been discovered and described in the literature. For this reason, we predicited OLP-related miRNAs. Topological properties of the obtained OLP-related microRNAome were also studied.

The interactions in the obtained network showed power law behavior, in agreement with the scale-free topology theory of the biological graphs. One hundred and thirty two genes were identified and five of them (namely, JUN, EGFR, FOS, IL2, ITGB4) were classified as leaders. Interestingly, all of them but EGFR were up-regulated and were widely distributed in the network (in term of topological parameters such as stress, eccentricity and radiality) and showed higher topological coefficients than the other genes.

Moreover, we managed to find the 48.39 % of the already established OLP-related miRNAs, suggesting that at least half of the OLP-related microRNAome finely tunes few, highly interconnected hub genes. We also found other miRNAs that have not been directly linked with OLP yet but have a role in other oral diseases. For the remaining miRNAs, their role is still unknown and has to be explored. From the topological analysis, it emerges that the microRNAome generated by the selected miRNAs preserves the properties of the entire OLP-related microRNAome, being the bulk of it.

Even with the limitations of any theoretical ab initio analysis, this study can foster further research in the field of the molecular biology and genomics of oral diseases, suggesting targeted biomolecular experimentation, focused on the leader genes and their miRNAs, and therefore simpler to be analysed than mass scale molecular genomics. Moreover, it may suggest new potential risk factors and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Haq A, Kusnierz-Cabala B, Darczuk D, Sobuta E, Dumnicka P, Wojas-Pelc A, Chomyszyn-Gajewska M. Interleukin-6 and neopterin levels in the serum and saliva of patients with lichen planus and oral lichen planus. J Oral Pathol Med. 2014. doi:10.1111/jop.12199 (Epub ahead of print).

    Google Scholar 

  2. Agha-Hosseini F, Mirzaii-Dizgah I. p53 as a neoplastic biomarker in patients with erosive and plaque like forms of oral lichen planus. J Contemp Dent Pract. 2013;14(1):1–3.

    Article  PubMed  Google Scholar 

  3. Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T, Megraw M, Grosse I, Sellis T, Hatzigeorgiou AG. miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res. 2010;38(Database issue):D137–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. An N, Rausch-Fan X, Wieland M, Matejka M, Andrukhov O, Schedle A. Initial attachment, cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dent Mater. 2012;28(12):1207–14.

    Article  CAS  PubMed  Google Scholar 

  5. Andreadis D, Epivatianos A, Poulopoulos A, Nomikos A, Christidis K, Papazoglou G, Antoniades D, Barbatis C. Immunohistochemical detection of the expression of the cell adhesion molecules E-cadherin, desmoglein-2, beta4-integrin, ICAM-1 and HCAM (CD44s) in Warthin’s tumour of the parotid gland. Oral Oncol. 2005;41(8):799–805.

    Article  CAS  PubMed  Google Scholar 

  6. Andreasen JO. Oral lichen planus: a clinical evaluation of 115 cases. Oral Surg Oral Med Oral Pathol. 1968;25:31–42.

    Article  CAS  PubMed  Google Scholar 

  7. Anuradha CH, Reddy BV, Nandan SR, Kumar SR. Oral lichen planus. A review. N Y State Dent J. 2008;74:66–68.

    PubMed  Google Scholar 

  8. Aguirre Urizar JM. Letter to the editor: oral lichenoid disease. A new classification proposal. Med Oral Patol Oral Cir Bucal. 2008;13(4):E224.

    PubMed  Google Scholar 

  9. Arrais JP, Rosa N, Melo J, Coelho ED, Amaral D, Correia MJ, Barros M, Oliveira JL. OralCard: a bioinformatic tool for the study of oral proteome. Arch Oral Biol. 2013;58(7):762–72.

    Article  CAS  PubMed  Google Scholar 

  10. Arão TC1, Guimarães AL, de Paula AM, Gomes CC, Gomez RS. Increased miRNA-146a and miRNA-155 expressions in oral lichen planus. Arch Dermatol Res. 2012;304(5):371–5. doi:10.1007/s00403-011-1197-x.

    Google Scholar 

  11. Au J, Patel D, Campbell JH. Oral lichen planus. Oral Maxillofac Surg Clin North Am. 2013;25(1):93–100, vii.

    Article  PubMed  Google Scholar 

  12. Barabasi AL, Ravasz E, Vicsek T. Deterministic scale-free networks. Phys A Stat Mech Appl. 2001;299(3–4):559–564.

    Article  Google Scholar 

  13. Bauer-Mehren A. Integration of genomic information with biological networks using Cytoscape. Methods Mol Biol. 2013;1021:37–61.

    Article  PubMed  Google Scholar 

  14. Baum BJ, Yates JR 3rd, Srivastava S, Wong DT, Melvin JE. Scientific frontiers: emerging technologies for salivary diagnostics. Adv Dent Res. 2011;23(4):360–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Becker J, Schuppan D. Altered expression of extracellular matrix proteins and integrins in oral lichen planus (OLP). J Oral Pathol Med. 1995;24(4):159–64.

    Article  CAS  PubMed  Google Scholar 

  16. Boorghani M, Gholizadeh N, Taghavi Zenouz A, Vatankhah M, Mehdipour M. Oral lichen planus: clinical features, etiology, treatment and management; a review of literature. J Dent Res Dent Clin Dent Prospects. 2010;4(1):3–9.

    PubMed Central  PubMed  Google Scholar 

  17. Bragazzi NL, Nicolini C. a leader genes approach-based tool for molecular genomics: from gene-ranking to gene-network systems biology and biotargets predictions. J Comput Sci Syst Biol. 2013;6:165–176.

    Article  Google Scholar 

  18. Bragazzi NL, Sivozhelezov V, Nicolini C. Leader gene: a fast data-mining tool for molecular genomics. J Proteomics Bioinform. 2011;4(4):83–86.

    CAS  Google Scholar 

  19. Bragazzi NL, Pechkova E, Nicolini C. Proteomics and proteogenomics approaches for oral diseases. Adv Protein Chem Struct Biol. 2014;95:125–62.

    Article  CAS  PubMed  Google Scholar 

  20. Burbelo PD, Bayat A, Lebovitz EE, Iadarola MJ. New technologies for studying the complexity of oral diseases. Oral Dis. 2012;18(2):121–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Carbone M, Arduino PG, Carrozzo M, Gandolfo S, Argiolas MR, Bertolusso G, Conrotto D, Pentenero M, Broccoletti R. Course of oral lichen planus: a retrospective study of 808 northern Italian patients. Oral Dis. 2009;15(3):235–43.

    Article  CAS  PubMed  Google Scholar 

  22. Carrozzo M. Oral diseases associated with hepatitis C virus infection. Part 2: lichen planus and other diseases. Oral Dis. 2008;14(3):217–28.

    Article  CAS  PubMed  Google Scholar 

  23. Carrozzo M, Gandolfo S. Oral diseases possibly associated with hepatitis C virus. Crit Rev Oral Biol Med. 2003;14(2):115–27.

    Article  CAS  PubMed  Google Scholar 

  24. Chandarana SP, Lee JS, Chanowski EJ, Sacco AG, Bradford CR, Wolf GT, Prince ME, Moyer JS, Eisbruch A, Worden FP, Giordano TJ, Kumar B, Cordell KG, Carey TE, Chepeha DB. Prevalence and predictive role of p16 and epidermal growth factor receptor in surgically treated oropharyngeal and oral cavity cancer. Head Neck. 2012. doi:10.1002/hed.23087 (Epub ahead of print).

    Google Scholar 

  25. Chen Y, Zhang W, Geng N, Tian K, Jack Windsor L. MMPs, TIMP-2, and TGF-beta1 in the cancerization of oral lichen planus. Head Neck. 2008;30(9):1237–45.

    Article  PubMed  Google Scholar 

  26. Cheng YS, Rees T, Jordan L, Oxford L, O’Brien J, Chen HS, Wong D. Salivary endothelin-1 potential for detecting oral cancer in patients with oral lichen planus or oral cancer in remission. Oral Oncol. 2011;47(12):1122–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Cheng YS, Jordan L, Rees T, Chen HS, Oxford L, Brinkmann O, Wong D. Levels of potential oral cancer salivary mRNA biomarkers in oral cancer patients in remission and oral lichen planus patients. Clin Oral Investig. 2014;18(3):985–93. doi:10.1007/s00784-013-1041-0.

    Google Scholar 

  28. Cheng L, Wang G, Li J, Zhang T, Xu P, Wang Y. SIDD: a semantically integrated database towards a global view of human disease. PLoS ONE. 2013;8(10):e75504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Cheriyan VT, Thomas C, Balaram P. Augmentation of T-cell immune responses and signal transduction proteins in oral cancer patients: potential for IL-2-mediated immunotherapy. J Cancer Res Clin Oncol. 2011;137(10):1435–44.

    Article  CAS  PubMed  Google Scholar 

  30. Chiappelli F, Covani U, Giacomelli L. Proteomics as it pertains to oral pathologies and dental research. Bioinformation. 2011;5(7):277.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Covani U, Marconcini S, Giacomelli L, Sivozhelevov V, Barone A, Nicolini C. Bioinformatic prediction of leader genes in human periodontitis. J Periodontol. 2008;79(10):1974–83.

    Article  CAS  PubMed  Google Scholar 

  32. Dang J, Bian YQ, Sun JY, Chen F, Dong GY, Liu Q, Wang XW, Kjems J, Gao S, Wang QT. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med. 2013;42(4):315–21.

    Article  CAS  PubMed  Google Scholar 

  33. Danielsson K, Ebrahimi M, Wahlin YB, Nylander K, Boldrup L. Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J Eur Acad Dermatol Venereol. 2012;26(11):1415–9.

    Article  CAS  PubMed  Google Scholar 

  34. Danielsson K, Wahlin YB, Gu X, Boldrup L, Nylander K. Altered expression of miR-21, miR-125b, and miR-203 indicates a role for these microRNAs in oral lichen planus. J Oral Pathol Med. 2012;41(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  35. Danielsson K, Boldrup L, Rentoft M, Coates PJ, Ebrahimi M, Nylander E, Wahlin YB, Nylander K. Autoantibodies and decreased expression of the transcription factor ELF-3 together with increased chemokine pathways support an autoimmune phenotype and altered differentiation in lichen planus located in oral mucosa. J Eur Acad Dermatol Venereol. 2013;27(11):1410–6.

    Article  CAS  PubMed  Google Scholar 

  36. De Cecco L, Dugo M, Canevari S, Daidone MG, Callari M. Measuring microRNA expression levels in oncology: from samples to data analysis. Crit Rev Oncog. 2013;18(4):273–87.

    Article  PubMed  Google Scholar 

  37. Demchak B, Hull T, Reich M, Liefeld T, Smoot M, Ideker T, Mesirov JP. Cytoscape: the network visualization tool for GenomeSpace workflows. F1000Res. 2014;3:151.

    PubMed Central  PubMed  Google Scholar 

  38. de Sousa FA, Paradella TC, Carvalho YR, Rosa LE. Comparative analysis of the expression of proliferating cell nuclear antigen, p53, bax, and bcl-2 in oral lichen planus and oral squamous cell carcinoma. Ann Diagn Pathol. 2009;13(5):308–12.

    Article  PubMed  Google Scholar 

  39. Di Stasio D, Guida A, Salerno C, Contaldo M, Esposito V, Laino L, Serpico R, Lucchese AE. Oral lichen planus: a narrative review. Front Biosci (Elite Ed). 2014;6:370–6.

    Article  Google Scholar 

  40. Ebrahimi M, Boldrup L, Coates PJ, Wahlin YB, Bourdon JC, Nylander K. Expression of novel p53 isoforms in oral lichen planus. Oral Oncol. 2008;44(2):156–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ebrahimi M, Boldrup L, Wahlin YB, Coates PJ, Nylander K. Decreased expression of the p63 related proteins beta-catenin, E-cadherin and EGFR in oral lichen planus. Oral Oncol 2008;44(7):634–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ebrahimi M, Nylander K, van der Waal I. Oral lichen planus and the p53 family: what do we know? J Oral Pathol Med. 2011;40(4):281–5.

    Article  CAS  PubMed  Google Scholar 

  43. Eisenberg E, Krutchkoff DJ. Lichenoid lesions of oral mucosa. Diagnostic criteria and their importance in the alleged relationship to oral cancer. Oral Surg Oral Med Oral Pathol. 1992;73(6):699–704.

    Article  CAS  PubMed  Google Scholar 

  44. Eng G, Chen A, Vess T, Ginsburg GS. Genome technologies and personalized dental medicine. Oral Dis. 2012;18(3):223–35.

    Article  CAS  PubMed  Google Scholar 

  45. Epstein JB, Wan LS, Gorsky M, Zhang L. Oral lichen planus: progress in understanding its malignant potential and the implications for clinical management. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(1):32–7.

    Article  PubMed  Google Scholar 

  46. Ettl T, Baader K, Stiegler C, Müller M, Agaimy A, Zenk J, Kühnel T, Gosau M, Zeitler K, Schwarz S, Brockhoff G. Loss of PTEN is associated with elevated EGFR and HER2 expression and worse prognosis in salivary gland cancer. Br J Cancer. 2012;106(4):719–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ettl T, Stiegler C, Zeitler K, Agaimy A, Zenk J, Reichert TE, Gosau M, Kühnel T, Brockhoff G, Schwarz S. EGFR, HER2, survivin, and loss of pSTAT3 characterize high-grade malignancy in salivary gland cancer with impact on prognosis. Hum Pathol. 2012;43(6):921–31.

    Article  CAS  PubMed  Google Scholar 

  48. Fox T. Clinical lecture on lichen ruber of hebra. Br Med J. 1871;1(537):392–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Fu J, Chen W, Sun Z. Gene expression of epidermal growth factor and epidermal growth factor receptor in oral lichen planus. Zhonghua Kou Qiang Yi Xue Za Zhi. 2005;40(6):455–8.

    CAS  PubMed  Google Scholar 

  51. Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine. 2004;28(3):109–23.

    Article  CAS  PubMed  Google Scholar 

  52. Gallo A, Alevizos I. Isolation of circulating microRNA in saliva. Methods Mol Biol. 2013;1024:183–90.

    Article  CAS  PubMed  Google Scholar 

  53. Gandarillas A. Epidermal differentiation, apoptosis, and senescence: common pathways? Exp Gerontol. 2000;35(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  54. Gandolfo S, Richiardi L, Carrozzo M, Broccoletti R, Carbone M, Pagano M, Vestita C, Rosso S, Merletti F. Risk of oral squamous cell carcinoma in 402 patients with oral lichen planus: a follow-up study in an Italian population. Oral Oncol. 2004;40(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia I, Kuska R, Somerman MJ. Expanding the foundation for personalized medicine: implications and challenges for dentistry. J Dent Res. 2013;92(7 Suppl):3S-10S.

    Article  CAS  PubMed  Google Scholar 

  56. Gassling V, Hampe J, Açil Y, Braesen JH, Wiltfang J, Häsler R. Disease-associated miRNA-mRNA networks in oral lichen planus. PLoS One. 2013;8(5):e63015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gaur P, Singh AK, Shukla NK, Das SN. Inter-relation of Th1, Th2, Th17 and Treg cytokines in oral cancer patients and their clinical significance. Hum Immunol. 2014;75(4):330–7.

    Article  CAS  PubMed  Google Scholar 

  58. Georgakopoulou EA, Troupis TG, Troupis G, Gorgoulis VG. Update of the cancer-associated molecular mechanisms in oral lichen planus, a disease with possible premalignant nature. J BUON. 2011;16(4):613–6.

    CAS  PubMed  Google Scholar 

  59. Giacomelli L, Nicolini C. Gene expression of human T lymphocytes cell cycle: experimental and bioinformatic analysis. J Cell Biochem. 2006;99(5):1326–33.

    Article  CAS  PubMed  Google Scholar 

  60. Giacomelli L, Oluwadara O, Chiappe G, Barone A, Chiappelli F, Covani U. Relationship between human oral lichen planus and oral squamous cell carcinoma at a genomic level: a datamining study. Bioinformation. 2009;4(6):258–62.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Giannelli G, Brassard J, Foti C, Stetler-Stevenson WG, Falk-Marzillier J, Zambonin-Zallone A, Schiraldi O, Quaranta V. Altered expression of basement membrane proteins and their integrin receptors in lichen planus: possible pathogenetic role of gelatinases A and B. Lab Invest. 1996;74(6):1091–104.

    CAS  PubMed  Google Scholar 

  62. Glick M. Personalized oral health care: providing ‘-omic’ answers to oral health care queries. J Am Dent Assoc. 2012;143(2):102–4.

    Article  PubMed  Google Scholar 

  63. Gorsky M, Epstein JB. Oral lichen planus: malignant transformation and human papilloma virus: a review of potential clinical implications. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):461–4.

    Article  PubMed  Google Scholar 

  64. Gorsky M, Epstein JB, Hasson-Kanfi H, Kaufman E. Smoking habits among patients diagnosed with oral lichen planus. Tob Induc Dis. 2004;2(2):103–8.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Grimm M, Iftner T, Altaki H, Iftner A, Peters JP, Munz A, Reinert S. Detection of mutation-specific epidermal growth factor receptor (E746-A750del) and lack of detection of human papillomavirus in oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2014. pii: S0901-5027(14)00162–3. doi:10.1016/j.ijom.2014.04.006 (Epub ahead of print).

    Google Scholar 

  66. Gu GM, Martin MD, Darveau RP, Truelove E, Epstein J. Oral and serum IL-6 levels in oral lichen planus patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(6):673–8.

    Article  PubMed  Google Scholar 

  67. Gurkan C, Lapp H, Hogenesch JB, Balch WE. Exploring trafficking GTPase function by mRNA expression profiling: use of the SymAtlas web-application and the Membrome datasets. Methods Enzymol. 2005;403:1–10.

    Article  CAS  PubMed  Google Scholar 

  68. Gustafson J, Eklund C, Wallström M, Zellin G, Magnusson B, Hasséus B. Langerin-expressing and CD83-expressing cells in oral lichen planus lesions. Acta Odontol Scand. 2007;65(3):156–61.

    Article  CAS  PubMed  Google Scholar 

  69. Gutiérrez-Venegas G, Castillo-Alemán R. Characterization of the transduction pathway involved in c-fos and c-jun expression induced by Aggregatibacter actinomycetemcomitans lipopolysaccharides in human gingival fibroblasts. Int Immunopharmacol. 2008;8(11):­1513–23.

    Article  PubMed  CAS  Google Scholar 

  70. Häkkinen L, Kainulainen T, Salo T, Grenman R, Larjava H. Expression of integrin alpha9 subunit and tenascin in oral leukoplakia, lichen planus, and squamous cell carcinoma. Oral Dis. 1999;5(3):210–7.

    Article  PubMed  Google Scholar 

  71. Hallopeau H. Sur un cas de lichen de Wilson gingival avec neoplasia voisine dans la région maxillaire. Bull Soc Fr Dermatol Syphiligr 1910;17:32.

    Google Scholar 

  72. Hamidi S, Salo T, Kainulainen T, Epstein J, Lerner K, Larjava H. Expression of alpha(v)beta6 integrin in oral leukoplakia. Br J Cancer. 2000;82(8):1433–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Hartmann S, Seher A, Brands RC, Linz C, Lessner G, Böhm H, Kübler AC, Müller-Richter UD. Influence of epidermal growth factor receptor expression on the cetuximab and panitumumab response rates of head and neck carcinoma cells. J Craniomaxillofac Surg. 2014. pii: S1010-5182(14)00098-5. doi:10.1016/j.jcms.2014.03.018 (Epub ahead of print).

    Google Scholar 

  74. Hirota M, Ito T, Okudela K, Kawabe R, Yazawa T, Hayashi H, Nakatani Y, Fujita K, Kitamura H. Cell proliferation activity and the expression of cell cycle regulatory proteins in oral lichen planus. J Oral Pathol Med. 2002;31(4):204–12.

    Article  CAS  PubMed  Google Scholar 

  75. Hirschhorn JN. Genetic approaches to studying common diseases and complex traits. Pediatr Res. 2005;57(5 Pt 2):74R-77R.ù.

    Article  PubMed  Google Scholar 

  76. Hooper SD, Bork P. Medusa: a simple tool for interaction graph analysis. Bioinformatics. 2005;21(24):4432–3.

    Article  CAS  PubMed  Google Scholar 

  77. Hu JY, Zhang J, Cui JL, Liang XY, Lu R, Du GF, Xu XY, Zhou G. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine. 2013;62(1):141–5.

    Article  CAS  PubMed  Google Scholar 

  78. Ichimura M, Hiratsuka K, Ogura N, Utsunomiya T, Sakamaki H, Kondoh T, Abiko Y, Otake S, Yamamoto M. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J Oral Pathol Med. 2006;35(3):167–74.

    Article  CAS  PubMed  Google Scholar 

  79. Ismail SB, Kumar SK, Zain RB. Oral lichen planus and lichenoid reactions: etiopathogenesis, diagnosis, management and malignant transformation. J Oral Sci. 2007;49(2):89–106.

    Article  PubMed  Google Scholar 

  80. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Jiang L, Edwards SM, Thomsen B, Workman CT, Guldbrandtsen B, Sørensen P. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records. BMC Bioinformatics. 2014;15(1):315.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Jimeno-Yepes AJ, Sticco JC, Mork JG, Aronson AR. GeneRIF indexing: sentence selection based on machine learning. BMC Bioinformatics. 2013;14:171.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Jones J, Downer CS, Speight PM. Changes in the expression of integrins and basement membrane proteins in benign mucous membrane pemphigoid. Oral Dis. 1995;1(3):159–65.

    Article  CAS  PubMed  Google Scholar 

  84. Jovanovic V, Giacomelli L, Sivozhelezov V, Degauque N, Lair D, Soulillou JP, Pechkova E, Nicolini C, Brouard S. AKT1 leader gene and downstream targets are involved in a rat model of kidney allograft tolerance. J Cell Biochem. 2010;111(3):709–19.

    Article  CAS  PubMed  Google Scholar 

  85. Kainulainen T, Autio-Harmainen H, Oikarinen A, Salo S, Tryggvason K, Salo T. Altered distribution and synthesis of laminin-5 (kalinin) in oral lichen planus, epithelial dysplasias and squamous cell carcinomas. Br J Dermatol. 1997;136(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  86. Karatsaidis A, Schreurs O, Axéll T, Helgeland K, Schenck K. Inhibition of the transforming growth factor-beta/Smad signaling pathway in the epithelium of oral lichen. J Invest Dermatol. 2003;121(6):1283–90.

    Article  CAS  PubMed  Google Scholar 

  87. Khan A, Farah CS, Savage NW, Walsh LJ, Harbrow DJ, Sugerman PB. Th1 cytokines in oral lichen planus. J Oral Pathol Med. 2003;32(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  88. Kilpi A, Rich AM, Konttinen YT, Reade PC. Expression of c-erbB-2 protein in keratinocytes of oral mucosal lichen planus and subsequent squamous cell carcinoma. Eur J Oral Sci. 1996;104(3):278–84.

    Article  CAS  PubMed  Google Scholar 

  89. Kumagai K, Horikawa T, Gotoh A, Yamane S, Yamada H, Kobayashi H, Hamada Y, Suzuki S, Suzuki R. Up-regulation of EGF receptor and its ligands, AREG, EREG, and HB-EGF in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(6):748–54.

    Article  PubMed  Google Scholar 

  90. Kurokawa A, Nagata M, Kitamura N, Noman AA, Ohnishi M, Ohyama T, Kobayashi T, Shingaki S, Takagi R; Oral, Maxillofacial Pathology, and Surgery Group. Diagnostic value of integrin alpha3, beta4, and beta5 gene expression levels for the clinical outcome of tongue squamous cell carcinoma. Cancer. 2008;112(6):1272–81.

    Article  CAS  PubMed  Google Scholar 

  91. Laskaris GC, Papavasiliou SS, Bovopoulou OD, Nicolis GD. Lichen planus pigmentosus of the oral mucosa: a rare clinical variety. Dermatologica. 1981;162(1):61–3.

    Article  CAS  PubMed  Google Scholar 

  92. Lee HJ. Exceptional stories of microRNAs. Exp Biol Med (Maywood). 2013;238(4):339–43.

    Article  CAS  Google Scholar 

  93. Leslie R, O’Donnell CJ, Johnson AD. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics. 2014;30(12):i185–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Li TJ, Cui J. COX-2, MMP-7 expression in oral lichen planus and oral squamous cell carcinoma. Asian Pac J Trop Med. 2013;6(8):640–3.

    Article  PubMed  CAS  Google Scholar 

  95. Leyva-Huerta ER, Ledesma-Montes C, Rojo-Botello RE, Vega-Memije E. P53 and bcl-2 immunoexpression in patients with oral lichen planus and oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2012;17(5):e745–50.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Lisa Cheng YS, Jordan L, Gorugantula LM, Schneiderman E, Chen HS, Rees T. Salivary interleukins 6 and 8 in oral cancer patients and in patients with chronic oral inflammatory diseases. J Periodontol. 2014;85(7):956–65. doi:10.1902/jop.2013.130320.

    Google Scholar 

  97. Lodi G, Scully C, Carrozzo M, Griffiths M, Sugerman PB, Thongprasom K. Current controversies in oral lichen planus: report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(1):40–51.

    Article  PubMed  Google Scholar 

  98. Lodi G, Scully C, Carrozzo M, Griffiths M, Sugerman PB, Thongprasom K. Current controversies in oral lichen planus: report of an international consensus meeting. Part 2. Clinical management and malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(2):164–78.

    Article  PubMed  Google Scholar 

  99. Lodi G, Carrozzo M, Furness S, Thongprasom K. Interventions for treating oral lichen planus: a systematic review. Br J Dermatol. 2012;166(5):938–47.

    Article  CAS  PubMed  Google Scholar 

  100. Lu R, Zeng X, Han Q, Lin M, Long L, Dan H, Zhou G, Chen Q. Overexpression and selectively regulatory roles of IL-23/IL-17 axis in the lesions of Oral Lichen Planus. Mediators Inflamm. 2014;2014:701094.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Ma L, Wang H, Yao H, Zhu L, Liu W, Zhou Z. Bmi1 expression in oral lichen planus and the risk of progression to oral squamous cell carcinoma. Ann Diagn Pathol. 2013;17(4):­327–30.

    Article  PubMed  Google Scholar 

  102. Maclellan SA, Lawson J, Baik J, Guillaud M, Poh CF, Garnis C. Differential expression of miRNAs in the serum of patients with high-risk oral lesions. Cancer Med. 2012;1(2):­268–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.

    Article  CAS  PubMed  Google Scholar 

  104. Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A. 2003;100(21):11980–11985.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Manuel Gándara Rey J, Diniz Freitas M. High rate of malignant transformation in atypical oral lichen planus lesions. Med Oral. 2003;8(5):309.

    PubMed  Google Scholar 

  106. Marconcini S, Covani U, Barone A, Vittorio O, Curcio M, Barbuti S, Scatena F, Felli L, Nicolini C. Real-time quantitative polymerase chain reaction analysis of patients with refractory chronic periodontitis. J Periodontol. 2011;82(7):1018–24.

    Article  CAS  PubMed  Google Scholar 

  107. Martínez-Lara I, González-Moles MA, Ruiz-Avila I, Bravo M, Ramos MC, Fernández-Martínez JA. Proliferating cell nuclear antigen (PCNA) as a marker of dysplasia in oral mucosa. Acta Stomatol Belg. 1996;93(1):29–32.

    PubMed  Google Scholar 

  108. Martín-Ezquerra G, Salgado R, Toll A, Gilaberte M, Baró T, Alameda Quitllet F, Yébenes M, Solé F, Garcia-Muret M, Espinet B, Pujol RM. Multiple genetic copy number alterations in oral squamous cell carcinoma: study of MYC, TP53, CCDN1, EGFR and ERBB2 status in primary and metastatic tumours. Br J Dermatol. 2010;163(5):1028–35.

    Article  PubMed  CAS  Google Scholar 

  109. Mattila R, Alanen K, Syrjänen S. Desmocollin expression in oral atrophic lichen planus correlates with clinical behavior and DNA content. J Cutan Pathol. 2008;35(9):832–8.

    Article  PubMed  Google Scholar 

  110. McCartan BE, Healy CM. The reported prevalence of oral lichen planus: a review and critique. J Oral Pathol Med. 2008;37(8):447–53.

    Article  CAS  PubMed  Google Scholar 

  111. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res. 2007;35(Database issue):D149–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16(1):34–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Mishra A, Bharti AC, Saluja D, Das BC. Transactivation and expression patterns of Jun and Fos/AP-1 super-family proteins in human oral cancer. Int J Cancer. 2010;126(4):819–29.

    CAS  PubMed  Google Scholar 

  114. Mithani SK, Mydlarz WK, Grumbine FL, Smith IM, Califano JA. Molecular genetics of premalignant oral lesions. Oral Dis. 2007;13(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  115. Modolo F, Martins MT, Loducca SV, de Araújo VC. Expression of integrin subunits alpha2, alpha3, alpha5, alphav, beta1, beta3 and beta4 in different histological types of ameloblastoma compared with dental germ, dental lamina and adult lining epithelium. Oral Dis. 2004;10(5):277–82.

    Article  CAS  PubMed  Google Scholar 

  116. Mollaoglu N. Oral lichen planus: a review. Br J Oral Maxillofac Surg. 2000;38(4):370–7.

    Article  CAS  PubMed  Google Scholar 

  117. Monteiro LS, Diniz-Freitas M, Garcia-Caballero T, Warnakulasuriya S, Forteza J, Fraga M. Combined cytoplasmic and membranous EGFR and p53 overexpression is a poor prognostic marker in early stage oral squamous cell carcinoma. J Oral Pathol Med. 2012;41(7):­559–67.

    PubMed  Google Scholar 

  118. Nagao T, Warnakulasuriya S. Annual screening for oral cancer detection. Cancer Detect Prev. 2003;27(5):333–7.

    Article  PubMed  Google Scholar 

  119. Nagao T, Warnakulasuriya S, Gelbier S, Yuasa H, Tsuboi S, Nakagaki H. Oral pre-cancer and the associated risk factors among industrial workers in Japan’s overseas enterprises in the UK. J Oral Pathol Med. 2003;32(5):257–64.

    Article  PubMed  Google Scholar 

  120. Nicolini C, Spera R, Stura E, Fiordoro S, Giacomelli L. Gene expression in the cell cycle of human T-lymphocytes: II. Experimental determination by DNASER technology. J Cell Biochem. 2006;97(5):1151–9.

    Article  CAS  PubMed  Google Scholar 

  121. Nicolini C, Bragazzi N, Pechkova E. Nanoproteomics enabling personalized nanomedicine. Adv Drug Deliv Rev. 2012;64(13):1522–31.

    Article  CAS  PubMed  Google Scholar 

  122. Nylander K, Coates PJ, Hall PA. Characterization of the expression pattern of p63 alpha and delta Np63 alpha in benign and malignant oral epithelial lesions. Int J Cancer. 2000;87(3):368–72.

    Article  CAS  PubMed  Google Scholar 

  123. Nylander E, Ebrahimi M, Wahlin YB, Boldrup L, Nylander K. Changes in miRNA expression in sera and correlation to duration of disease in patients with multifocal mucosal lichen planus. J Oral Pathol Med. 2012;41(1):86–9.

    Article  CAS  PubMed  Google Scholar 

  124. Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull. 2013;36(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  125. Ogmundsdóttir HM, Björnsson J, Holbrook WP. Role of TP53 in the progression of pre-malignant and malignant oral mucosal lesions. A follow-up study of 144 patients. J Oral Pathol Med. 2009;38(7):565–71.

    Article  PubMed  CAS  Google Scholar 

  126. Ogmundsdóttir HM, Hilmarsdóttir H, Björnsson J, Holbrook WP. Longitudinal study of TP53 mutations in eight patients with potentially malignant oral mucosal disorders. J Oral Pathol Med. 2009;38(9):716–21.

    Article  PubMed  CAS  Google Scholar 

  127. Oluwadara O, Giacomelli L, Christensen R, Kossan G, Avezova R, Chiappelli F. LCK, survivin and PI-3K in the molecular biomarker profiling of oral lichen planus and oral squamous cell carcinoma. Bioinformation. 2009;4(6):249–57.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Orlando B, Bragazzi N, Nicolini C. Bioinformatics and systems biology analysis of genes network involved in OLP (Oral Lichen Planus) pathogenesis. Arch Oral Biol. 2013;58(6):664–73.

    Article  CAS  PubMed  Google Scholar 

  129. Orlando B, Giacomelli L, Ricci M, Barone A, Covani U. Leader genes in osteogenesis: a theoretical study. Arch Oral Biol. 2013;58(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  130. Pandey M, Prakash O, Santhi WS, Soumithran CS, Pillai RM. Overexpression of COX-2 gene in oral cancer is independent of stage of disease and degree of differentiation. Int J Oral Maxillofac Surg. 2008;37(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  131. Patel RS, Jakymiw A, Yao B, Pauley BA, Carcamo WC, Katz J, Cheng JQ, Chan EK. High resolution of microRNA signatures in human whole saliva. Arch Oral Biol. 2011;56(12):1506–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Patil A, Prasad S, Ashok L, Sujatha GP. Oral bullous lichen planus: case report and review of management. Contemp Clin Dent. 2012;3(3):344–8.

    Article  PubMed Central  PubMed  Google Scholar 

  133. Pavlic V, Vujic-Aleksic V. Phototherapy approaches in treatment of oral lichen planus. Photodermatol Photoimmunol Photomed. 2013. doi:10.1111/phpp.12074 (Epub ahead of print).

    Google Scholar 

  134. Payeras MR, Cherubini K, Figueiredo MA, Salum FG. Oral lichen planus: Focus on etiopathogenesis. Arch Oral Biol. 2013;58(9):1057–69. doi:10.1016/j.archoralbio.2013.04.004.

    Google Scholar 

  135. Peng K, Xu W, Zheng J, Huang K, Wang H, Tong J, Lin Z, Liu J, Cheng W, Fu D, Du P, Kibbe WA, Lin SM, Xia T. The Disease and Gene Annotations (DGA): an annotation resource for human disease. Nucleic Acids Res. 2013;41(Database issue):D553–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Pickert A. Concise review of lichen planus and lichenoid dermatoses. Cutis. 2012;90(3):­E1–3.

    Google Scholar 

  137. Pindborg JJRP, Smith CJ, van der Waal I. Histological typing of cancer and precancer of the oral mucosa. World Health Organization international histological classification of tumours. 2nd ed. Berlin: Springer; 1997.

    Book  Google Scholar 

  138. Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasingh J. Overexpression of cdk4 and p16 in oral lichen planus supports the concept of premalignancy. J Oral Pathol Med. 2011;40(4):294–9.

    Article  PubMed  Google Scholar 

  139. Pradhan S, Sengupta M, Dutta A, Bhattacharyya K, Bag SK, Dutta C, Ray K. Indian genetic disease database. Nucleic Acids Res. 2011;39(Database issue):D933–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Prolo P, Chiappelli F, Cajulis E, Bauer J, Spackman S, Romeo H, Carrozzo M, Gandolfo S, Christensen R. Psychoneuroimmunology in oral biology and medicine: the model of oral lichen planus. Ann N Y Acad Sci. 2002;966:429–40.

    Article  CAS  PubMed  Google Scholar 

  141. Racapé M, Bragazzi N, Sivozhelezov V, Danger R, Pechkova E, Duong Van Huyen JP, Soulillou JP, Brouard S, Nicolini C. SMILE silencing and PMA activation gene networks in HeLa cells: comparison with kidney transplantation gene networks. J Cell Biochem. 2012;113(6):1820–32.

    Article  PubMed  CAS  Google Scholar 

  142. Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, Feolo M, Hindorff LA. Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur J Hum Genet. 2014;22(1):144–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Rappaport N, Nativ N, Stelzer G, Twik M, Guan-Golan Y, Stein TI, Bahir I, Belinky F, Morrey CP, Safran M, Lancet D. MalaCards: an integrated compendium for diseases and their annotation. Database (Oxford). 2013;2013:bat018.

    Article  CAS  Google Scholar 

  144. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: integrating information about genes, proteins and diseases. Trends Genet. 1997;13(4):163.

    Article  CAS  PubMed  Google Scholar 

  145. Reichart PA, Schmidtberg W, Scheifele C. Betel chewer’s mucosa in elderly Cambodian women. J Oral Pathol Med. 1996;25(7):367–70.

    Article  CAS  PubMed  Google Scholar 

  146. Reichert S, Machulla HK, Klapproth J, Zimmermann U, Reichert Y, Gläser C, Schaller HG, Schulz S. Interleukin-2 -330 and 166 gene polymorphisms in relation to aggressive or chronic periodontitis and the presence of periodontopathic bacteria. J Periodontal Res. 2009;44(5):628–35.

    Article  CAS  PubMed  Google Scholar 

  147. Rhodus NL, Cheng B, Myers S, Bowles W, Ho V, Ondrey F. A comparison of the pro-inflammatory, NF-kappaB-dependent cytokines: TNF-alpha, IL-1-alpha, IL-6, and IL-8 in different oral fluids from oral lichen planus patients. Clin Immunol. 2005;114(3):278–83.

    Article  CAS  PubMed  Google Scholar 

  148. Rhodus NL, Cheng B, Myers S, Miller L, Ho V, Ondrey F. The feasibility of monitoring NF-kappaB associated cytokines: TNF-alpha, IL-1alpha, IL-6, and IL-8 in whole saliva for the malignant transformation of oral lichen planus. Mol Carcinog. 2005;44(2):77–82.

    Article  CAS  PubMed  Google Scholar 

  149. Ribeiro IP, Marques F, Caramelo F, Pereira J, Patrício M, Prazeres H, Ferrão J, Julião MJ, Castelo-Branco M, de Melo JB, Baptista IP, Carreira IM. Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell Oncol (Dordr). 2014;37(1):29–39.

    Article  CAS  Google Scholar 

  150. Ribeiro FA, Noguti J, Oshima CT, Ribeiro DA. Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: a promising approach. Anticancer Res. 2014;34(4):1547–52.

    CAS  PubMed  Google Scholar 

  151. Rosa N, Correia MJ, Arrais JP, Lopes P, Melo J, Oliveira JL, Barros M. From the salivary proteome to the OralOme: comprehensive molecular oral biology. Arch Oral Biol. 2012;57(7):853–64.

    Article  CAS  PubMed  Google Scholar 

  152. Sachdev R, Mandal AK, Singh I, Agarwal AK. Progressive rise of c fos expression from premalignant to malignant lesions of oral cavity. Med Oral Patol Oral Cir Bucal. 2008;13(11):E683–6.

    PubMed  Google Scholar 

  153. Sami N, Bhol KC, Ahmed AR. Treatment of oral pemphigoid with intravenous immunoglobulin as monotherapy. Long-term follow-up: influence of treatment on antibody titres to human alpha6 integrin. Clin Exp Immunol. 2002;129(3):533–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Schrodi SJ, Mukherjee S, Shan Y, Tromp G, Sninsky JJ, Callear AP, Carter TC, Ye Z, Haines JL, Brilliant MH, Crane PK, Smelser DT, Elston RC, Weeks DE. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future. Front Genet. 2014;5:162.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Scully C, El-Kom M. Lichen planus: review and update on pathogenesis. J Oral Pathol 1985;14:431–58.

    Article  CAS  PubMed  Google Scholar 

  156. Shannon W, Culverhouse R, Duncan J. Analyzing microarray data using cluster analysis. Pharmacogenomics. 2003;4(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  157. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Shi P, Liu W, Zhou ZT, He QB, Jiang WW. Podoplanin and ABCG2: malignant transformation risk markers for oral lichen planus. Cancer Epidemiol Biomarkers Prev. 2010;19(3):844–9.

    Article  CAS  PubMed  Google Scholar 

  159. Shimbel A. Structural parameters of communication networks. Bull Math Biophys. 1953;15:501–507.

    Article  Google Scholar 

  160. Shimoyama T, Horie N, Kato T, Kaneko T, Komiyama K. Helicobacter pylori in oral ulcerations. J Oral Sci. 2000;42(4):225–9.

    Article  CAS  PubMed  Google Scholar 

  161. Silverman S, Jr, Gorsky M, Lozada-Nur F. A prospective follow-up study of 570 patients with oral lichen planus: persistence, remission, and malignant association. Oral Surg Oral Med Oral Pathol. 1985;60:30–4.

    Article  PubMed  Google Scholar 

  162. Simark-Mattsson C, Bergenholtz G, Jontell M, Eklund C, Seymour GJ, Sugerman PB, Savage NW, Dahlgren UI. Distribution of interleukin-2, -4, -10, tumour necrosis factor-alpha and transforming growth factor-beta mRNAs in oral lichen planus. Arch Oral Biol. 1999;44(6):499–507.

    Article  CAS  PubMed  Google Scholar 

  163. Sivozhelezov V, Giacomelli L, Tripathi S, Nicolini C. Gene expression in the cell cycle of human T lymphocytes: I. Predicted gene and protein networks. J Cell Biochem. 2006;97(5):1137–50.

    Article  CAS  PubMed  Google Scholar 

  164. Sivozhelezov V, Braud C, Giacomelli L, Pechkova E, Giral M, Soulillou JP, Brouard S, Nicolini C. Immunosuppressive drug-free operational immune tolerance in human kidney transplants recipients. Part II. Non-statistical gene microarray analysis. J Cell Biochem. 2008;103(6):1693–706.

    Article  CAS  PubMed  Google Scholar 

  165. Sivozhelezov V, Spera R, Giacomelli L, Hainsworth E, LaBaer J, Bragazzi NL, Nicolini C. Bioinformatics and fluorescence DNASER for NAPPA studies on cell transformation and cell cycle. In: LaBaer J, editor. Functional proteomics and nanotechnology-based microarays. Pan sotanford publishing. 2010. pp. 31–59.

    Google Scholar 

  166. Soejima K, Nakamura H, Tamai M, Kawakami A, Eguchi K. Activation of MKK4 (SEK1), JNK, and c-Jun in labial salivary infiltrating T cells in patients with Sjögren’s syndrome. Rheumatol Int. 2007;27(4):329–33.

    Article  CAS  PubMed  Google Scholar 

  167. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122(6):957–68.

    Article  CAS  PubMed  Google Scholar 

  168. Stone SJ, McCracken GI, Heasman PA, Staines KS, Pennington M. Cost-effectiveness of personalized plaque control for managing the gingival manifestations of oral lichen planus: a randomized controlled study. J Clin Periodontol. 2013;40(9):859–67.

    Article  PubMed  Google Scholar 

  169. Sugerman PB, Savage NW. Oral lichen planus: causes, diagnosis and management. Aust Dent J. 2002;47(4):290–7.

    Article  CAS  PubMed  Google Scholar 

  170. Sugerman PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A, Seymour GJ, Bigby M. The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med. 2002;13(4):350–65.

    Article  CAS  PubMed  Google Scholar 

  171. Sujatha D, Hebbar PB, Pai A. Prevalence and correlation of oral lesions among tobacco smokers, tobacco chewers, areca nut and alcohol users. Asian Pac J Cancer Prev. 2012;13(4):1633–7.

    Article  CAS  PubMed  Google Scholar 

  172. Sun A, Wang JT, Chia JS, Chiang CP. Serum interleukin-8 level is a more sensitive marker than serum interleukin-6 level in monitoring the disease activity of oral lichen planus. Br J Dermatol. 2005;152(6):1187–92.

    Article  CAS  PubMed  Google Scholar 

  173. Sun L, Feng J, Ma L, Liu W, Zhou Z. CD133 expression in oral lichen planus correlated with the risk for progression to oral squamous cell carcinoma. Ann Diagn Pathol. 2013. pii:S1092-9134(13)00078-6. doi:10.1016/j.anndiagpath.2013.06.004 (Epub ahead of print).

    Google Scholar 

  174. Sutinen M, Kainulainen T, Hurskainen T, Vesterlund E, Alexander JP, Overall CM, Sorsa T, Salo T. Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. Br J Cancer. 1998;77(12):2239–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Syrjänen S, Lodi G, von Bültzingslöwen I, Aliko A, Arduino P, Campisi G, Challacombe S, Ficarra G, Flaitz C, Zhou HM, Maeda H, Miller C, Jontell M. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis. 2011;17(Suppl 1):58–72.

    Article  PubMed  Google Scholar 

  176. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet. 2002;3(5):391–7.

    Article  CAS  PubMed  Google Scholar 

  177. Tao XA, Li CY, Rhodus NL, Xia J, Yang XP, Cheng B. Simultaneous detection of IFN-gamma and IL-4 in lesional tissues and whole unstimulated saliva from patients with oral lichen planus. J Oral Pathol Med. 2008;37(2):83–7.

    Article  CAS  PubMed  Google Scholar 

  178. Tsai CA, Lee TC, Ho IC, Yang UC, Chen CH, Chen JJ. Multi-class clustering and prediction in the analysis of microarray data. Math Biosci. 2005;193(1):79–100.

    Article  CAS  PubMed  Google Scholar 

  179. Turatti E, da Costa Neves A, de Magalhães MH, de Sousa SO. Assessment of c-Jun, c-Fos and cyclin D1 in premalignant and malignant oral lesions. J Oral Sci. 2005;47(2):71–6.

    Article  CAS  PubMed  Google Scholar 

  180. Upadhyay J, Upadhyay RB, Agrawal P, Jaitley S, Shekhar R. Langerhans cells and their role in oral mucosal diseases. N Am J Med Sci. 2013;5(9):505–14.

    Article  PubMed Central  PubMed  Google Scholar 

  181. Valter K, Boras VV, Buljan D, Juras DV, Susić M, Pandurić DG, Verzak Z. The influence of psychological state on oral lichen planus. Acta Clin Croat. 2013;52(2):145–9.

    PubMed  Google Scholar 

  182. Velozo J, Aguilera S, Alliende C, Ewert P, Molina C, Pérez P, Leyton L, Quest A, Brito M, González S, Leyton C, Hermoso M, Romo R, González MJ. Severe alterations in expression and localisation of {alpha}6{beta}4 integrin in salivary gland acini from patients with Sjogren syndrome. Ann Rheum Dis. 2009;68(6):991–6 (Epub 2008 Jul 14).

    Article  CAS  PubMed  Google Scholar 

  183. Villarroel Dorrego M, Correnti M, Delgado R, Tapia FJ. Oral lichen planus: immunohistology of mucosal lesions. J Oral Pathol Med. 2002;31(7):410–4.

    Article  PubMed  Google Scholar 

  184. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433–7.

    Article  CAS  Google Scholar 

  185. Walsh LJ. Mast cells and oral inflammation. Crit Rev Oral Biol Med. 2003;14(3):188–98.

    Article  PubMed  Google Scholar 

  186. Wali RK, Kunte DP, De La Cruz M, Tiwari AK, Brasky J, Weber CR, Gibson TP, Patel A, Savkovic SD, Brockstein BE, Roy HK Topical polyethylene glycol as a novel chemopreventive agent for oral cancer via targeting of epidermal growth factor response. PLoS One. 2012;7(6):e38047.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Walton LJ, Thornhill MH, Macey MG, Farthing PM. Cutaneous lymphocyte associated antigen (CLA) and alpha e beta 7 integrins are expressed by mononuclear cells in skin and oral lichen planus. J Oral Pathol Med. 1997;26(9):402–7.

    Article  CAS  PubMed  Google Scholar 

  188. Wang J, Zhang J, Li K, Zhao W, Cui Q. SpliceDisease database: linking RNA splicing and disease. Nucleic Acids Res. 2012;40(Database issue):D1055–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Wernicke S, Rasche F. FANMOD: a tool for fast network motif detection. Bioinformatics. 2006;22(9):1152–3.

    Article  CAS  PubMed  Google Scholar 

  190. Wickham LF. Sur un signe pathognomonique delichen du Wilson (lichen plan) stries et punctuations grisatres. Ann Dermatol Syph 1895;6:17–20.

    Google Scholar 

  191. Wilson E. On lichen planus. J Cutan Med Dis Skin 1869;3:117–132.

    Google Scholar 

  192. Wong DT. Salivaomics. J Am Dent Assoc. 2012;143(10 Suppl):19S-24S.

    Article  PubMed  Google Scholar 

  193. Wong DT. Salivary diagnostics: scientific and clinical frontiers. Adv Dent Res. 2011;23(4):350–2.

    Google Scholar 

  194. Wong DT. Salivary extracellular noncoding RNA: emerging biomarkers for molecular diagnostics. Clin Ther. 2015;37(3):540–51.

    Google Scholar 

  195. Wright JT, Hart TC. The genome projects: implications for dental practice and education. J Dent Educ. 2002;66(5):659–71.

    CAS  PubMed  Google Scholar 

  196. Xia W, Lau YK, Zhang HZ, et al. Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin Cancer Res 1999;5:4164–74.

    CAS  PubMed  Google Scholar 

  197. Xu Z, Shen Z, Shi L, Sun H, Liu W, Zhou Z. Aldehyde dehydrogenase 1 expression correlated with malignant potential of oral lichen planus. Ann Diagn Pathol. 2013;17(5):408–11.

    Article  PubMed  Google Scholar 

  198. Yan SK, Wei BJ, Lin ZY, Yang Y, Zhou ZT, Zhang WD. A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral Oncol. 2008;44(5):477–83.

    Article  CAS  PubMed  Google Scholar 

  199. Yang K, Zhang FJ, Tang H, Zhao C, Cao YA, Lv XQ, Chen D, Li YD. In-vivo imaging of oral squamous cell carcinoma by EGFR monoclonal antibody conjugated near-infrared quantum dots in mice. Int J Nanomedicine. 2011;6:1739–45 (Epub 2011 Aug 19).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Yildirim B, Sengüven B, Demir C. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus. Med Oral Patol Oral Cir Bucal. 2011;16(2):e170–4.

    Article  PubMed  Google Scholar 

  201. Yoshizawa JM, Wong DT. Salivary microRNAs and oral cancer detection. Methods Mol Biol. 2013;936:313–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Younes F, Quartey EL, Kiguwa S, Partridge M. Expression of TNF and the 55-kDa TNF receptor in epidermis, oral mucosa, lichen planus and squamous cell carcinoma. Oral Dis. 1996;2(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  203. Zhang WY, Liu W, Zhou YM, Shen XM, Wang YF, Tang GY. Altered microRNA expression profile with miR-27b down-regulation correlated with disease activity of oral lichen planus. Oral Dis. 2012;18(3):265–70.

    Article  CAS  PubMed  Google Scholar 

  204. Zhou XJ, Sugerman PB, Savage NW, Walsh LJ. Matrix metalloproteinases and their inhibitors in oral lichen planus. J Cutan Pathol. 2001;28(2):72–82.

    Article  CAS  PubMed  Google Scholar 

  205. Zhu W, Phan QT, Boontheung P, Solis NV, Loo JA, Filler SG. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A. 2012;109(35):14194–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Luigi Bragazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bragazzi, N., Nicolini, C. (2015). Lichen Planus. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_9

Download citation

Publish with us

Policies and ethics