Skip to main content

Salivary Gland Diseases

  • Chapter
  • First Online:
Genomics, Personalized Medicine and Oral Disease

Abstract

Salivary gland diseases, which have a heterogeneous etiology, share a reduction or loss of saliva production and clinical xerostomia. These ailments may be monogenic, neoplastic, autoimmune, infectious, environmental, or multifactorial in origin, and based on that origin, the genetic contribution to their development varies. In the current chapter we focus on the genetics of Sjögren’s syndrome as a model of a multifactorial disease. We also discuss the genetic mutations that underlie autosomal dominant, autosomal recessive, and X-linked salivary gland abnormalities, as well as the role of genetic factors on the predisposition and phenotypic variation of other autoimmune and granulomatous disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besana C, Salmaggi C, Pellegrino C, et al. Chronic bilateral dacryo-adenitis in identical twins: a possible incomplete form of Sjogren syndrome. Eur J Pediatr. 1991;150:652–5.

    Article  CAS  PubMed  Google Scholar 

  2. Bolstad AI, Haga HJ, Wassmuth R, et al. Monozygotic twins with primary Sjogren’s syndrome. J Rheumatol. 2000;27:2264–6.

    CAS  PubMed  Google Scholar 

  3. Houghton KM, Cabral DA, Petty RE, et al. Primary Sjogren’s syndrome in dizygotic adolescent twins: one case with lymphocytic interstitial pneumonia. J Rheumatol. 2005;32:1603–6.

    PubMed  Google Scholar 

  4. Scofield RH, Kurien BT, Reichlin M. Immunologically restricted and inhibitory anti-Ro/SSA in monozygotic twins. Lupus. 1997;6:395–8.

    Article  CAS  PubMed  Google Scholar 

  5. Helmick CG, Felson DT, Lawrence RC, et al. National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58:15–25.

    Article  PubMed  Google Scholar 

  6. Gøransson LG, Haldorsen K, Brun JG, et al. The point prevalence of clinically relevant primary Sjögren’s syndrome in two Norwegian counties. Scand J Rheumatol. 2011;40:221–4.

    Article  PubMed  Google Scholar 

  7. Fox RI. Sjögren’s syndrome. Lancet. 2005;366:321–31.

    Article  CAS  PubMed  Google Scholar 

  8. Amador-Patarroyo MJ, Arbelaez JG, Mantilla RD, et al. Sjögren’s syndrome at the crossroad of polyautoimmunity. J Autoimmun. 2012;39:199–205.

    Article  CAS  PubMed  Google Scholar 

  9. Daniels TE. Labial salivary gland biopsy in Sjögren’s syndrome. Assessment as a diagnostic criterion in 362 suspected cases. Arthritis Rheum. 1984;27:147–56.

    Article  CAS  PubMed  Google Scholar 

  10. Reichlin, M, Scofield, RH. Ro (SS-A) antibodies. In: Shoenfeld Y, Gershwin ME, Meroni PL, editors. Textbook of Autoantibodies, 2nd ed. Amsterdam: Elsevier; 2006. p. 783–8.

    Google Scholar 

  11. Ramos-Casals M, Solans R, Rosas J, et al. Primary Sjögren syndrome in Spain: clinical and immunologic expression in 1010 patients. Medicine. 2008;87:210–9.

    Article  CAS  PubMed  Google Scholar 

  12. Anaya JM, Delgado-Vega AM, Castiblanco J. Genetic basis of Sjögren’s syndrome. How strong is the evidence? Clin Dev Immunol. 2006;13:209–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pavlidis NA, Karsh J, Moutsopoulos HM. The clinical picture of primary Sjögren’s syndrome: a retrospective study. J Rheumatol. 1982:9:685–690.

    CAS  PubMed  Google Scholar 

  14. Kassan SS, Moutsoupoulos HM. Clinical manifestations and early diagnosis of Sjögren Syndrome. Arch Intern Med. 2004;164:1275–1284.

    Article  PubMed  Google Scholar 

  15. Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis. 2002;61:554–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rasmussen A, Ice JA, Li H, et al. Comparison of the American-European Consensus Group Sjögren’s syndrome classification criteria to newly proposed American College of Rheumatology criteria in a large, carefully characterised SICCA cohort. Ann Rheum Dis. 2013. doi:10.1136/annrheumdis-2013-203845. [Epub ahead of print].

    Google Scholar 

  17. Cobb BL, Lessard CJ, Harley JB, et al. Genes and Sjögren’s syndrome. Rheum Dis Clin North Am. 2008;34:847–68 (vii).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gottenberg, J-E, Busson, M, Loiseau, P, et al. In primary Sjogren’s syndrome, HLA class II is associated exclusively with autoantibody production and spreading of the autoimmune response. Arthritis Rheum.2003;48:2240–5.

    Article  CAS  PubMed  Google Scholar 

  19. Harley JB, Reichlin M, Arnett FC, et al. Gene interaction at HLA-DQ enhances autoantibody production in primary Sjögren’s syndrome. Science. 1986;232(4754):1145–7.

    Article  CAS  PubMed  Google Scholar 

  20. Gottenberg JE, Busson M, Loiseau P, et al. Association of transforming growth factor beta1 and tumor necrosis factor alpha polymorphisms with anti-SSB/La antibody secretion in patients with primary Sjögren’s syndrome. Arthritis Rheum. 2004;50:570–80.

    Article  CAS  PubMed  Google Scholar 

  21. Cruz-Tapias P, Rojas-Villarraga A, Maier-Moore S, Anaya JM. HLA and Sjögren’s syndrome susceptibility. A meta-analysis of worldwide studies. Autoimmun Rev. 2012;11(4):281–7. doi:10.1016/j.autrev.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  22. Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet. 2013;45(11):1284–92. doi:10.1038/ng.2792.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Zhang K, Chen H, et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren’s syndrome at 7q11.23. Nat Genet. 2013;45(11):1361–5.

    Article  CAS  PubMed  Google Scholar 

  24. Korman BD, Alba MI, Le JM, et al. Variant form of STAT4 is associated with primary Sjogren’s syndrome. Genes Immun. 2008;9:267–70.

    Article  CAS  PubMed  Google Scholar 

  25. Miceli-Richard C, Comets E, Loiseau P, et al. Association of an IRF5 gene functional polymorphism with Sjogren’s syndrome. Arthritis Rheum. 2007;56:3989–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nordmark G, Kristjansdottir G, Theander E, et al. Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjogren’s syndrome. Genes Immun. 2009;10:68–76.

    Article  CAS  PubMed  Google Scholar 

  27. Nordmark G, Kristjansdottir G, Theander E, et al. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun. 2011;12:100–9.

    Article  CAS  PubMed  Google Scholar 

  28. Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005;434:243–9.

    Article  CAS  PubMed  Google Scholar 

  29. Taniguchi T, Ogasawara K, Takaoka A, et al. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–55.

    Article  CAS  PubMed  Google Scholar 

  30. Demirci FY, Manzi S, Ramsey-Goldman R, et al. Association of a common interferon regulatory factor 5 (IRF5) variant with increased risk of systemic lupus erythematosus (SLE). Ann Hum Genet. 2007;71:308–11.

    Article  CAS  PubMed  Google Scholar 

  31. Graham RR, Kozyrev SV, Baechler EC, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet. 2006;38:550–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kelly JA, Kelley JM, Kaufman KM, et al. Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans. Genes Immun. 2008;9:187–94.

    Article  CAS  PubMed  Google Scholar 

  33. Kozyrev SV, Lewen S, Reddy PM, et al. Structural insertion/deletion variation in IRF5 is associated with a risk haplotype and defines the precise IRF5 isoforms expressed in systemic lupus erythematosus. Arthritis Rheum. 2007;56:1234–41.

    Article  CAS  PubMed  Google Scholar 

  34. Reddy MV, Velazquez-Cruz R, Baca V, et al. Genetic association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygozity than Europeans. Hum Genet. 2007;121:721–7.

    Article  PubMed  Google Scholar 

  35. Shin HD, Sung YK, Choi CB, et al. Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res Ther. 2007;9:R32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Sigurdsson S, Nordmark G, Goring HH, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet. 2005;76:528–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Miceli-Richard C, Gestermann N, Ittah M, et al. The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjögren’s syndrome. Arthritis Rheum. 2009;60(7):1991–7.

    Article  CAS  PubMed  Google Scholar 

  38. Sigurdsson S, Göring HH, Kristjansdottir G, et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum Mol Genet. 2008;17(6):872–81.

    Article  CAS  PubMed  Google Scholar 

  39. Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357:977–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Morinobu A, Gadina M, Strober W, et al. STAT4 serine phosphorylation is critical for IL-12-induced IFN-gamma production but not for cell proliferation. Proc Natl Acad Sci U S A. 2002;99:12281–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nishikomori R, Usui T, Wu CY, et al. Activated STAT4 has an essential role in Th1 differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling. J Immunol. 2002;169:4388–98.

    Article  CAS  PubMed  Google Scholar 

  42. Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest. 2002;109:59–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis. 2003;62:168–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci. 2005;1050:34–9.

    Article  CAS  PubMed  Google Scholar 

  45. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189:1747–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2:465–75.

    Article  CAS  PubMed  Google Scholar 

  47. Nossent JC, Lester S, Zahra D, et al. Polymorphism in the 5′ regulatory region of the B-lymphocyte activating factor gene is associated with the Ro/La autoantibody response and serum BAFF levels in primary Sjögren’s syndrome. Rheumatology (Oxford). 2008;47:1311–6.

    Article  CAS  Google Scholar 

  48. Rusakiewicz S, Nocturne G, Lazure T, et al. NCR3/NKp30 contributes to pathogenesis in primary Sjogren’s syndrome. Sci Transl Med. 2013;5(195):195ra96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Burbelo PD, Ambatipudi K, Alevizos I. Genome-wide association studies in Sjögren’s syndrome: what do the genes tell us about disease pathogenesis? Autoimmun Rev. 2014;13(7):756–61. doi:10.1016/j.autrev.2014.02.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Adrianto I, Wang S, Wiley GB, et al. Association of two independent functional risk haplotypes in TNIP1 with systemic lupus erythematosus. Arthritis Rheum. 2012;64(11):3695–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Watford WT, Hissong BD, Bream JH, et al. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev. 2004;202:139–56.

    Article  CAS  PubMed  Google Scholar 

  52. Xu M, Mizoguchi I, Morishima N, et al. Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. Clin Dev Immunol. 2010;2010.

    Google Scholar 

  53. Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008;40(4):395–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lessard CJ, Adrianto I, Ice JA, et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am J Hum Genet. 2012;90(4):648–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gottenberg JE, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc Natl Acad Sci U S A. 2006;103:2770–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Emamian ES, Leon JM, Lessard CJ, et al. Peripheral blood gene expression profiling in Sjögren’s syndrome. Genes Immun. 2009;10:285–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hom G, Graham RR, Modrek B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900–9.

    Article  CAS  PubMed  Google Scholar 

  58. Simpfendorfer KR, Olsson LM, Manjarrez Orduño N, et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum Mol Genet. 2012;21(17):3918–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Mells GF, Floyd JA, Morley KI, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet. 2011;43(4):329–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. McKeigue PM, Carpenter JR, Parra EJ, et al. Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: application to African-American populations. Ann Hum Genet. 2000;64(Pt 2):171–86.

    Article  CAS  PubMed  Google Scholar 

  62. Hjelmervik TO, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52:1534–44.

    Article  CAS  PubMed  Google Scholar 

  63. Perez P, Anaya JM, Aguilera S, et al. Gene expression and chromosomal location for susceptibility to Sjögren’s syndrome. J Autoimmun. 2009;33:99–108.

    Article  CAS  PubMed  Google Scholar 

  64. Baechler EC, Gregersen PK, Behrens TW. The emerging role of interferon in human systemic lupus erythematosus. Curr Opin Immunol. 2004;16:801–7.

    Article  CAS  PubMed  Google Scholar 

  65. Sozzani S, Bosisio D, Scarsi M, et al. Type I interferons in systemic autoimmunity. Autoimmunity. 2010;43:196–203.

    Article  CAS  PubMed  Google Scholar 

  66. Fleissig Y, Deutsch O, Reichenberg E, et al. Different proteomic protein patterns in saliva of Sjögren’s syndrome patients. Oral Dis. 2009;15:61–8.

    Article  CAS  PubMed  Google Scholar 

  67. Hu S, Wang J, Meijer J, et al. Salivary proteomic and genomic biomarkers for primary Sjögren’s syndrome. Arthritis Rheum. 2007;56:3588–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Giusti L, Baldini C, Bazzichi L, et al. Proteome analysis of whole saliva: a new tool for rheumatic diseases–the example of Sjögren’s syndrome. Proteomics. 2007;7:1634–43.

    Article  CAS  PubMed  Google Scholar 

  69. Ryu OH, Atkinson JC, Hoehn GT, et al. Identification of parotid salivary biomarkers in Sjögren’s syndrome by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and two-dimensional difference gel electrophoresis. Rheumatology (Oxford). 2006;45:1077–86.

    Article  CAS  Google Scholar 

  70. Hjelmervik TO, Jonsson R, Bolstad AI. The minor salivary gland proteome in Sjögren’s syndrome. Oral Dis. 2009;15:342–53.

    Article  CAS  PubMed  Google Scholar 

  71. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 608710: 07/10/14. World Wide Web URL: http://omim.org/608710.

  72. Barrett AW. Wegener’s granulomatosis of the major salivary glands. J Oral Pathol Med. 2012;41:721–7.

    Article  CAS  PubMed  Google Scholar 

  73. Jagiello P, Gencik M, Arning L, et al. New genomic region for Wegener’s granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum Genet. 2004;114:468–77.

    Article  CAS  PubMed  Google Scholar 

  74. Xie G, Roshandel D, Sherva R, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65(9):2457–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. New Eng. J Med. 2012;367:214–23.

    CAS  Google Scholar 

  76. Chung SA, Xie G, Roshandel D, et al. Meta-analysis of genetic polymorphisms in granulomatosis with polyangiitis (Wegener’s) reveals shared susceptibility loci with rheumatoid arthritis. Arthritis Rheum. 2012;64(10):3463–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Alberici F, Martorana D, Bonatti F, et al. Genetics of ANCA- associated vasculitides: HLA and beyond. Clin Exp Rheumatol. 2014;32(2 Suppl 82):S90–7.

    PubMed  Google Scholar 

  78. Martorana D, Maritati F, Malerba G, et al. PTPN22 R620W polymorphism in the ANCA-associated vasculitides. Rheumatology (Oxford). 2012;51(5):805–12.

    Article  CAS  Google Scholar 

  79. Mueller A, Holl-Ulrich K, Gross WL. Granuloma in ANCA-associated vasculitides: another reason to distinguish between syndromes? Curr Rheumatol Rep. 2013;15(11):376. doi:10.1007/s11926-013-0376-5. Review.

    Article  PubMed  CAS  Google Scholar 

  80. Kelley JM, Monach PA, Ji C, et al. IgA and IgG antineutrophil cytoplasmic antibody engagement of Fc receptor genetic variants influences granulomatosis with polyangiitis. Proc Natl Acad Sci U S A. 2011;108(51):20736–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kamisawa T, Funata N, Hayashi Y, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol. 2003;38(10):982–4.

    Article  CAS  PubMed  Google Scholar 

  82. Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J Med. 2012;366(6):539–51.

    Article  CAS  PubMed  Google Scholar 

  83. Stone JH, Khosroshahi A, Deshpande V, et al. Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis Rheum. 2012;64(10):3061–7.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang L, Smyrk TC. Autoimmune pancreatitis and IgG4-related systemic diseases. Int J Clin Exp Pathol. 2010;3:491–504.

    PubMed Central  PubMed  Google Scholar 

  85. Deshpande V, Zen Y, Chan JK, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25(9):1181–92.

    Article  PubMed  Google Scholar 

  86. Cheuk W, Chan JK. IgG4-related sclerosing disease: a critical appraisal of an evolving clinicopathologic entity. Adv Anat Pathol. 2010;17(5):303–32.

    Article  CAS  PubMed  Google Scholar 

  87. Cornec D, Saraux A, Jousse-Joulin S, et al. The differential diagnosis of dry eyes, dry mouth, and parotidomegaly: a comprehensive review. Clin Rev Allergy Immunol. 2014 Jun 21.

    Google Scholar 

  88. Yao Q, Wu G, Hoschar A. IgG4-related Mikulicz’s disease is a multiorgan lymphoproliferative disease distinct from Sjögren’s syndrome: a Caucasian patient and literature review. Clin Exp Rheumatol. 2013;31(2):289–94.

    PubMed  Google Scholar 

  89. Mavragani CP, Fragoulis GE, Rontogianni D, et al. Elevated IgG4 Serum Levels Among Primary Sjögren’s Syndrome Patients: do they unmask underlying IgG4-related disease? Arthritis Care Res (Hoboken). 2014;66(5):773–7.

    Article  CAS  Google Scholar 

  90. Soliotis F, Mavragani CP, Plastiras SC, et al. IgG4-related disease: a rheumatologist’s perspective. Clin Exp Rheumatol. 2014;32:724–7. [Epub ahead of print].

    PubMed  Google Scholar 

  91. Yamamoto M, Harada S, Ohara M, et al. Clinical and pathological differences between Mikulicz’s disease and Sjögren’s Syndrome. Rheumatology (Oxford). 2005;44(2):227–34.

    Article  CAS  Google Scholar 

  92. Mahajan VS, Mattoo H, Deshpande V, et al. IgG4-related disease. Annu Rev Pathol. 2014;9:315–47. doi:10.1146/annurev-pathol-012513-104708.

    Article  CAS  PubMed  Google Scholar 

  93. Perez Alamino R, Espinoza LR, Zea AH. The great mimicker: IgG4-related disease. Clin Rheumatol. 2013;32(9):1267–73.

    Article  PubMed  Google Scholar 

  94. Zen Y, Nakanuma Y. Pathogenesis of IgG4-related disease. Curr Opin Rheumatol. 2011;23(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  95. Umemura T, Ota M, Hamano H, et al. Association of autoimmune pancreatitis with cytotoxic T-lymphocyte antigen 4 gene polymorphisms in Japanese patients. Am J Gastroenterol. 2008;103(3):588–94.

    Article  CAS  PubMed  Google Scholar 

  96. Umemura T, Ota M, Hamano H, et al. Genetic association of Fc receptor-like 3 polymorphisms with autoimmune pancreatitis in Japanese patients. Gut. 2006;55(9):1367–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Ota M, Ito T, Umemura T, et al. Polymorphism in the KCNA3 gene is associated with susceptibility to autoimmune pancreatitis in the Japanese population. Dis Markers. 2011;31(4):223–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Ota M, Katsuyama Y, Hamano H, et al. Two critical genes (HLA-DRB1 and ABCF1) in the HLA region are associated with the susceptibility to autoimmune pancreatitis. Immunogenetics. 2007;59(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  99. Chang MC, Chang YT, Tien YW, et al. T-cell regulatory gene CTLA-4 polymorphism/haplotype association with autoimmune pancreatitis. Clin Chem. 2007;53(9):1700–5.

    Article  CAS  PubMed  Google Scholar 

  100. Pandey JP. Genetic markers of Immunoglobulin G as potential risk factors for IgG4-related disease. J Rheumatol. 2012;39(10):2048.

    Article  PubMed  Google Scholar 

  101. Spagnolo P, Schwartz DA. Genetic predisposition to sarcoidosis: another brick in the wall. Eur Respir J. 2013;41(4):778–80.

    Article  CAS  PubMed  Google Scholar 

  102. Valeyre D, Prasse A, Nunes H, et al. Sarcoidosis. Lancet. 2014;383(9923):1155–67.

    Article  PubMed  Google Scholar 

  103. James DG, Sharma OP. Parotid gland sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2000;17(1):27–32.

    CAS  PubMed  Google Scholar 

  104. Online Mendelian inheritance in man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 181000: 03/01/2011. World Wide Web URL: http://omim.org/181000. Accessed 7 Sept 2014.

  105. Rybicki BA, Iannuzzi MC, Frederick MM, et al. Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med. 2001;164(11):2085–91.

    Article  CAS  PubMed  Google Scholar 

  106. Rybicki BA, Kirkey KL, Major M, et al. Familial risk ratio of sarcoidosis in African-American sibs and parents. Am J Epidemiol. 2001;153(2):188–93.

    Article  CAS  PubMed  Google Scholar 

  107. Fischer A, Grunewald J, Spagnolo P, et al. Genetics of sarcoidosis. Semin Respir Crit Care Med. 2014;35(3):296–306.

    Article  PubMed  Google Scholar 

  108. Sverrild A, Backer V, Kyvik KO, et al. Heredity in sarcoidosis: a registry-based twin study. Thorax. 2008;63(10):894–6.

    Article  CAS  PubMed  Google Scholar 

  109. Spagnolo P, Grunewald J. Recent advances in the genetics of sarcoidosis. J Med Genet. 2013;50(5):290–7. doi:10.1136/jmedgenet-2013-101532.

    Article  CAS  PubMed  Google Scholar 

  110. Darlington P, Tallstedt L, Padyukov L, et al. HLA-DRB1* alleles and symptoms associated with Heerfordt’s syndrome in sarcoidosis. Eur Respir J. 2011;38(5):1151–7.

    Article  CAS  PubMed  Google Scholar 

  111. Valentonyte R, Hampe J, Huse K, et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet. 2005;37(4):357–64.

    Article  CAS  PubMed  Google Scholar 

  112. Adrianto I, Lin CP, Hale JJ, et al. Genome-Wide Association Study of African and European Americans Implicates Multiple Shared and Ethnic Specific Loci in Sarcoidosis Susceptibility. PLoS ONE. 2013;8(9):e43907

    Article  Google Scholar 

  113. Cozier Y, Ruiz-Narvaez E, McKinnon C, et al. Replication of genetic loci for sarcoidosis in US black women: data from the Black Women’s Health Study. Hum Genet. 2013;132(7):803–10.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Salem S, Gros P. Genetic determinants of susceptibility to Mycobacterial infections: IRF8, a new kid on the block. Adv Exp Med Biol. 2013;783:45–80.

    Article  CAS  PubMed  Google Scholar 

  115. Alcaïs A, Fieschi C, Abel L, Casanova JL. Tuberculosis in children and adults: two distinct genetic diseases. J Exp Med. 2005;202(12):1617–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 607948: 07/01/2013. World Wide Web URL: http://omim.org/607948.

  117. Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620.

    Article  CAS  PubMed  Google Scholar 

  118. Cobat A, Orlova M, Barrera LF, et al. Host genomics and control of tuberculosis infection. Public Health Genomics. 2013;16(1–2):44–9.

    Article  CAS  PubMed  Google Scholar 

  119. Ottenhoff TH. New pathways of protective and pathological host defense to mycobacteria. Trends Microbiol. 2012;20(9):419–28.

    Article  CAS  PubMed  Google Scholar 

  120. Lei X, Zhu H, Zha L, Wang Y. SP110 gene polymorphisms and tuberculosis susceptibility: a systematic review and meta-analysis based on 10 624 subjects. Infect Genet Evol. 2012;12(7):1473–80.

    Article  CAS  PubMed  Google Scholar 

  121. de Albuquerque AC, Rocha LQ, de Morais Batista AH, et al. Association of polymorphism + 874 A/T of interferon-γ and susceptibility to the development of tuberculosis: meta-analysis. Eur J Clin Microbiol Infect Dis. 2012;31(11):2887–95.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Jiang T, Yang X, et al. Toll-like receptor − 1, − 2, and − 6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. PLoS One. 2013;8(5):e63357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Gorlin RJ, Cohen MM, Levin LS. Branchial arch and oro-acral disorders in syndromes of the head and neck. 3rd ed. New York: Oxford University Press, 1990, pp. 641–9.

    Google Scholar 

  124. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 164210: 09/23/2013. World Wide Web URL: http://omim.org/164210.

  125. Gorlin RJ, et al. Oculoauriculovertebral dysplasia, in Syndromes of the Head and Neck. 2nd ed. New York: McGraw-Hill; 1976. pp. 546–52.

    Google Scholar 

  126. Kaye CI, Martin AO, Rollnick BR, et al. Oculoauriculovertebral anomaly: segregation analysis. Am J Med Genet. 1992;43:913–7.

    Article  CAS  PubMed  Google Scholar 

  127. Tasse C, Majewsk F, Bohringer S, et al. A family with autosomal dominant oculo-auriculo-vertebral spectrum. Clin. Dysmorph. 2007;16:1–7.

    Article  Google Scholar 

  128. Kelberman D, Tyson J, Chandler DC, et al. Hemifacial microsomia: progress in understanding the genetic basis of a complex malformation syndrome. Hum Genet. 2001;109:638–45.

    Article  CAS  PubMed  Google Scholar 

  129. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 180920: 09/23/2013. World Wide Web URL: http://omim.org/180920.

  130. Gorlin RJ, Cohen MM, Levin LS. Other miscellaneous syndromes in Syndromes of the Head and Neck. 3rd ed. New York: Oxford University Press; 1990. p. 897.

    Google Scholar 

  131. Entesarian M, Dahlqvist J, Shashi V, et al. FGF10 missense mutations in aplasia of lacrimal and salivary glands (ALSG). Europ J Hum Genet. 2007;15:379–82.

    Article  CAS  PubMed  Google Scholar 

  132. Entesarian M, Matsson H, Klar J, et al. Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet. 2005;37:125–8.

    Article  CAS  PubMed  Google Scholar 

  133. Milunsky JM, Zhao G, Maher TA, et al. LADD syndrome is caused by FGF10 mutations. Clin Genet 2006;69:349–54.

    Article  CAS  PubMed  Google Scholar 

  134. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 149730: 09/10/2008. World Wide Web URL: http://omim.org/149730.

  135. Hollister DW, Klein SH, Dejager HJ, et al. The lacrimo-auriculo-dento-digital syndrome. J Pediat. 1973;83:438–44.

    Article  CAS  PubMed  Google Scholar 

  136. Levy WJ. Mesoectodermal dysplasia: a new combination of anomalies. Am J Ophthal. 1967;63:978–82.

    Article  CAS  PubMed  Google Scholar 

  137. Gorlin, RJ, Cohen MM, Levin, LS. Syndromes with unusual dental findings in Syndromes of the Head and Neck. 3rd ed. New York: Oxford University Press; 1990. p. 868.

    Google Scholar 

  138. Francannet C, Vanlieferinghen P, Dechelotte P, et al. LADD syndrome in five members of a three-generation family and prenatal diagnosis. Genet Counsel. 1994;5:85–91.

    CAS  PubMed  Google Scholar 

  139. Rohmann E, Brunner HG, Kayserili H, et al. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006;38:414–7.

    Article  CAS  PubMed  Google Scholar 

  140. Milunsky JM, Zhao G, Maher TA, et al. LADD syndrome is caused by FGF10 mutations. Clin Genet. 2006;69:349–54.

    Article  CAS  PubMed  Google Scholar 

  141. Online Mendelian inheritance in man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 600343: 07/13/2012. World Wide Web URL: http://omim.org/600343. Accessed 7 Sept 2014.

  142. Seifert G, Thomsen S, Donath K. Bilateral dysgenetic polycystic parotid glands: morphological analysis and differential diagnosis of a rare disease of the salivary glands. Virchows Arch A Path Anat Histol. 1981;390:273–88.

    Article  CAS  Google Scholar 

  143. Batsakis JG, Bruner JM, Luna MA. Polycystic (dysgenetic) disease of the parotid glands. Arch Otolaryng Head Neck Surg. 1988;114:1146–8.

    Article  CAS  PubMed  Google Scholar 

  144. Ficarra G, Sapp JP, Christensen RE et al. Dysgenetic polycystic disease of the parotid gland: report of case. J Oral Maxillofac Surg 1996;54:1246–9.

    Article  CAS  PubMed  Google Scholar 

  145. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 605041: 07/26/2011. World Wide Web URL: http://omim.org/605041. Accessed 7 Sept 2014.

  146. Brooke HG. Epithelioma adenoides cysticum. Brit J Derm. 1892;4:269–87.

    Google Scholar 

  147. Spiegler E. Ueber Endotheliome der Haut. Arch Derm Syph. 1899;50:163–76.

    Article  Google Scholar 

  148. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM132700: 07/26/2011. World Wide Web URL: http://omim.org/132700. Accessed 7 Sept 2014.

  149. Online Mendelian inheritance in man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 601606: 07/26/2011. World Wide Web URL: http://omim.org/601606. Accessed 7 Sept 2014.

  150. Merrick Y, Albeck H, Nielsen NH, et al. Familial clustering of salivary gland carcinoma in Greenland. Cancer 1986;57:2097–102.

    Article  CAS  PubMed  Google Scholar 

  151. Scheinfeld N, Hu G, Gill M, et al. Identification of a recurrent mutation in the CYLD gene in Brooke-Spiegler syndrome. Exp Derm. 2003;28:539–41.

    Article  CAS  Google Scholar 

  152. Gutierrez PP, Eggermann T, Holler D, et al. Phenotype diversity in familial cylindromatosis: a frameshift mutation in the tumor suppressor gene CYLD underlies different tumors of skin appendages. J Invest Derm. 2002;119:527–31.

    Article  CAS  Google Scholar 

  153. Hu G, Onder M, Gill M, et al. A novel missense mutation in CYLD in a family with Brooke-Spiegler syndrome. J Invest Derm. 2003;121:732–4.

    Article  CAS  PubMed  Google Scholar 

  154. Saggar S, Chernoff KA, Lodha S, et al. CYLD mutations in familial skin appendage tumours. (Letter) J Med Genet. 2008;45:298–302.

    Article  CAS  PubMed  Google Scholar 

  155. Online Mendelian inheritance in man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: MIM 305100: 07/11/2014. World Wide Web URL: http://omim.org/305100. Accessed 7 Sept 2014.

  156. Pinheiro M, Freire-Maia N. Christ-Siemens-Touraine syndrome–a clinical and genetic analysis of a large Brazilian kindred. I. Affected females. II. Affected males. III. Carrier detection. Am J Med Genet. 1979;4:113–34.

    Article  CAS  PubMed  Google Scholar 

  157. Gorlin RJ, Cohen MM, Levin, LS. Syndromes affecting the skin and mucosa. In: Syndromes of the Head and Neck. 3rd ed. New York: Oxford University Press; 1990. pp. 451–6.

    Google Scholar 

  158. Wright JT, Grange DK, Richter MK. Hypohidrotic Ectodermal Dysplasia. 2003 Apr 28 [Updated 2014 May 15]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2014. http://www.ncbi.nlm.nih.gov/books/NBK1112/.

  159. Zonana J, Gault J, Davies, KJP, et al. Detection of a molecular deletion at the DXS732 locus in a patient with X-linked hypohidrotic ectodermal dysplasia (EDA), with the identification of a unique junctional fragment. Am J Hum Genet. 1993;52:78–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Pinheiro M, Ideriha MT, Chautard-Freire-Maia EA et al. Christ-Siemens-Touraine syndrome: investigations on two large Brazilian kindreds with a new estimate of the manifestation rate among carriers. Hum Genet. 1981;57:428–31.

    Article  CAS  PubMed  Google Scholar 

  161. Monreal AW, Zonana J, Ferguson B. Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations. Am J Hum Genet. 1998;63:380–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Cambiaghi S, Restano L, Paakkonen K, Caputo R, Kere J. Clinical findings in mosaic carriers of hypohidrotic ectodermal dysplasia. Arch Dermatol 2000;136:217–24.

    Article  CAS  PubMed  Google Scholar 

  163. Monreal AW, Ferguson BM, Headon DJ, et al. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet. 1999;22:366–9.

    Article  CAS  PubMed  Google Scholar 

  164. Van der Hout AH, Oudesluijs GG, Venema A, et al. Mutation screening of the ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia. Europ J Hum Genet. 2008;16:673–9.

    Article  CAS  PubMed  Google Scholar 

  165. Bal E, Baala L, Cluzeau C, et al. Autosomal dominant anhidrotic ectodermal dysplasias at the EDARADD locus. Hum Mutat. 2007;8:703–9.

    Article  CAS  Google Scholar 

  166. Headon DJ, Emmal SA, Ferguson BM, et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature. 2001;414:913–6.

    Article  CAS  PubMed  Google Scholar 

  167. Cluzeau C, Hadj-Rabia S, Jambou M, et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90 % of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat. 2011;32:70–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Rasmussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rasmussen, A., Lessard, C., Sivils, K. (2015). Salivary Gland Diseases. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_11

Download citation

Publish with us

Policies and ethics