Skip to main content

Thermochemical Processing of Biomass

  • Chapter
Advances in Bioprocess Technology

Abstract

Torrefaction can be defined as “a thermochemical process in an inert or limited oxygen environment where biomass is slowly heated to within a specified temperature range and retained there for a stipulated time such that it results in near complete degradation of its hemicellulose content while maximizing mass and energy yield of solid product”. Biomass torrefaction is considered as a pre-treatment technology. Torrefaction can significantly reduce the energy requirement for grinding biomass. The equilibrium moisture content (EMC) and the immersion tests are two tests commonly used to measure the hydrophobicity of torrefied biomass. Pyrolysis is a thermal decomposition of organic materials in the absence of oxygen, producing a solid residue rich in carbon, condensable volatiles (bio-oil) and non-condensable gases (producer gas). The design and optimization of biomass pyrolysis reactors requires analytical description of the process. Simplifications have led to the development of lumped models containing conceptual or pseudo-reactions for modeling pyrolysis. Available models can be arranged into three main groups: one step models, model with competing reactions and models with secondary reactions. Gasification is a partial combustion process that converts carbonaceous materials like biomass into useful gaseous fuels with a useable heating value or chemical feedstock. Combustion of biomass proceeds in various forms: evaporation combustion, decomposition combustion, surface combustion and smoldering combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, H., & Wu, H. (2009). Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels, 23(8), 4174–4181.

    CAS  Google Scholar 

  • Acharjee, T. C., Coronella, C. J., & Vasquez, V. R. (2011). Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technology, 102(7), 4849–4854.

    CAS  Google Scholar 

  • Agar, D., & Wihersaari, M. (2012). Bio-coal, torrefied lignocellulosic resources—Key properties for its use in co-firing with fossil coal—Their status. Biomass and Bioenergy, 44, 107–111.

    CAS  Google Scholar 

  • Antal, M. J., Jr., & Varhegyi, G. (1995). Cellulose pyrolysis kinetics: The current state of knowledge. Industrial & Engineering Chemistry Research, 34(3), 703–717.

    CAS  Google Scholar 

  • Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169–175.

    CAS  Google Scholar 

  • Azeez, A. M., Meier, D., & Odermatt, J. (2011). Temperature dependence of fast pyrolysis volatile products from European and African biomasses. Journal of Analytical and Applied Pyrolysis, 90(2), 81–92.

    CAS  Google Scholar 

  • Banyasz, J. L., Li, S., Lyons-Hart, J., & Shafer, K. H. (2001). Gas evolution and the mechanism of cellulose pyrolysis. Fuel, 80(12), 1757–1763.

    CAS  Google Scholar 

  • Basu, P. (2010a). Biomass gasification and pyrolysis: Practical design and theory. Burlington, MA: Elsevier.

    Google Scholar 

  • Basu, P. (2010b). Chapter 3—Pyrolysis and torrefaction. In P. Basu (Ed.), Biomass gasification and pyrolysis (pp. 65–96). Boston: Academic.

    Google Scholar 

  • Basu, P. (2013). Chapter 4 - Torrefaction. In P. Basu (Ed.), Biomass gasification, pyrolysis and torrefaction (2nd ed., pp. 87–145). Boston: Academic.

    Google Scholar 

  • Bellur, S. R., Coronella, C. J., & Vásquez, V. R. (2009). Analysis of biosolids equilibrium moisture and drying. Environmental Progress & Sustainable Energy, 28(2), 291–298.

    CAS  Google Scholar 

  • Bergman, P. C. A., Boersma, A. R., Kiel, J. H. A., Wilberink, R. W. A., Bodenstaff H., & Heere P. G. T. (2003). Torrefaction for entrained flow gasification of biomass. Petten, The Netherlands, Energy Research Centre of the Netherlands (ECN) and TU/e, ECN-C-05-067.

    Google Scholar 

  • Bergman, P. C. A., Boersma, A. R., Zwart R. W. R., & Kiel, J. H. A. (2005). Torrefaction for biomass co-firing in existing coal-fired power stations “BIOCOAL”. Petten, The Netherlands, Energy Research Centre of the Netherlands (ECN), ECN-C--05-013.

    Google Scholar 

  • Bhuiyan, M. T., Hirai, N., & Sobue, N. (2000). Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46(6), 431–436.

    CAS  Google Scholar 

  • Bhuiyan, M. T., Hirai, N., & Sobue, N. (2001). Effect of intermittent heat treatment on crystallinity in wood cellulose. Journal of Wood Science, 47(5), 336–341.

    CAS  Google Scholar 

  • Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546.

    CAS  Google Scholar 

  • Bradbury, A. G. W., Sakai, Y., & Shafizadeh, F. (1979). A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science, 23(11), 3271–3280.

    CAS  Google Scholar 

  • Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin—A review. Cellullose Chemical Technology, 44(9), 353–363.

    CAS  Google Scholar 

  • Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856.

    CAS  Google Scholar 

  • Bridgeman, T. G., Jones, J. M., Williams, A., & Waldron, D. J. (2010). An investigation of the grindability of two torrefied energy crops. Fuel, 89(12), 3911–3918.

    CAS  Google Scholar 

  • Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.

    CAS  Google Scholar 

  • Broido, A., Javier-Son, A. C., Ouano, A. C., & Barrall, E. M. (1973). Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. Journal of Applied Polymer Science, 17(12), 3627–3635.

    Google Scholar 

  • Broido, A., & Nelson, M. A. (1975). Char yield on pyrolysis of cellulose. Combustion and Flame, 24, 263–268.

    CAS  Google Scholar 

  • Brown, R. C. (2011). Thermochemical processing of biomass: Conversion into fuels, chemicals and power. West Sussex, UK: John Wiley & Sons.

    Google Scholar 

  • Brunow, G., & Lundquist, K. (2011). Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). In C. Heitner, D. Dimmel, & J. Schmidt (Eds.), Lignin and lignans: Advances in chemistry (pp. 167–299). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Chan, W.-C. R., Kelbon, M., & Krieger, B. B. (1985). Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64(11), 1505–1513.

    CAS  Google Scholar 

  • Chen, D., Zhou, J., Zhang, Q., Zhu, X., & Lu, Q. (2014). Upgrading of rice husk by torrefaction and its influence on the fuel properties. BioResources, 9(4), 5893–5905.

    CAS  Google Scholar 

  • Chen, W.-H., Cheng, W.-Y., Lu, K.-M., & Huang, Y.-P. (2011). An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy, 88(11), 3636–3644.

    CAS  Google Scholar 

  • Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011a). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012–3021.

    CAS  Google Scholar 

  • Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J., & Lin, T.-C. (2011b). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36(5), 3012–3021.

    CAS  Google Scholar 

  • Chew, J. J., & Doshi, V. (2011). Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews, 15(8), 4212–4222.

    Google Scholar 

  • Collard, F.-X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608.

    CAS  Google Scholar 

  • Collard, F.-X., Blin, J., Bensakhria, A., & Valette, J. (2012). Influence of impregnated metal on the pyrolysis conversion of biomass constituents. Journal of Analytical and Applied Pyrolysis, 95, 213–226.

    CAS  Google Scholar 

  • Deng, J., Wang, G.-j., Kuang, J.-h., Zhang, Y.-l., & Luo, Y.-H. (2009). Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis, 86(2), 331–337.

    CAS  Google Scholar 

  • Di Blasi, C. (1998). Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis, 47(1), 43–64.

    Google Scholar 

  • Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140.

    Google Scholar 

  • Di Blasi, C., & Russo, G. (1993). Modeling of transport phenomena and kinetics of biomass pyrolysis. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 906–921). Netherlands: Springer.

    Google Scholar 

  • Drift, A. V. D., & Boerrigter, H. (2006). Synthesis gas from biomass for fuels and chemicals. Pettel, The Netherlands, Energy Research Center of the Netherlands (ECN).

    Google Scholar 

  • Drift, A. V. D., Boerrigter, H., Coda, B., Cieplik, M. K., & Hemmes, K. (2004). Entrained flow gasification of biomass: Ash behaviour, feeding issues, and system analyses. Pettel, The Netherlands, Energy Research Center of the Netherlands (ECN).

    Google Scholar 

  • Duca, D., Riva, G., Pedretti, E. F., Toscano, G., Chiara, Mengarelli., & Rossini, G. (2014). Solid biofuels production from agricultural residues and processing by-products by means of torrefaction treatment: the case of sunflower chain. Journal of Agricultural Engineering XLV(416): 97–102.

    Google Scholar 

  • Ergun, S. (1956). Kinetics of the reaction of carbon with carbon dioxide. The Journal of Physical Chemistry, 60(4), 480–485.

    CAS  Google Scholar 

  • Feldman, D. (1985). Wood—chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. Journal of Polymer Science, Polymer Letters Edition, 23(11), 601–602.

    Google Scholar 

  • Felfli, F. F., Luengo, C. A., Suárez, J. A., & Beatón, P. A. (2005). Wood briquette torrefaction. Energy for Sustainable Development, 9(3), 19–22.

    Google Scholar 

  • Ferro, D. T., Vigouroux, V., Grimm, A., & Zanzi, R. (2004). Torrefaction of agricultural and forest residues. Guantánamo, Cuba, Cubasolar: Cubasolar.

    Google Scholar 

  • Garcia-Perez, M., Metcalf, J., U. Washington State, Extension, P. Energy, U. Washington State, et al. (2009). The formation of polyaromatic hydrocarbons and dioxins during pyrolysis a review of the literature with descriptions of biomass composition, fast pyrolysis technologies and thermochemical reactions. Retrieved from http://www.pacificbiomass.org/documents/TheFormationOfPolyaromaticHydrocarbonsAndDioxinsDuringPyrolysis.pdf.

  • Girard, P., & Shah, N. (1989). Recent developments on torrefied wood – An alternative to charcoal for reducting deforestation. FAO/CNRE Workshop, Poros, Norway, FAO.

    Google Scholar 

  • Henrich, E., Dahmen, N., & Dinjus, E. (2009). Cost estimate for biosynfuel production via biosyncrude gasification. Biofuels, Bioproducts and Biorefining, 3(1), 28–41.

    CAS  Google Scholar 

  • Henrich, E., Dahmen, N., Raffelt, K., Stahl, R., & Weirich, F.(2007). The Karlsruhe "BIOLIQ" process for biomass gasification. 2nd European summer school on renewable motor fuels, Warsaw, Poland.

    Google Scholar 

  • Henrich, E., & Dinjus, E. (2002). Tar-free, high pressure synthesis gas from biomass. Expert meeting on pyrolysis and gasification of biomass. Strasbourg, France.

    Google Scholar 

  • Henrich, E., & Weirich, F. (2004). Pressurized entrained flow gasifiers for biomass. Environmental Engineering Science, 21(1), 53–64.

    CAS  Google Scholar 

  • Henriksson, G., Li, J., Zhang, L., & Lindstrom, M. E. (2010). Lignin utilization. In M. Crocker (Ed.), Thermochemical conversion of biomass to liquid fuels and chemicals (pp. 222–262). Cambridge, UK: The Royal Society of Chemistry.

    Google Scholar 

  • Higman, C., & Burgt, M. V. D. (2008). Gasification. New York, USA: Elsevier.

    Google Scholar 

  • Husain, A., & Kelman, A. (1959). Tissue is disintegrated. In J. G. Horsfall & A. E. Dimond (Eds.), Plant pathology (pp. 143–188). New York: Academic Press.

    Google Scholar 

  • Ibrahim, R. H. H., Darvell, L. I., Jones, J. M., & Williams, A. (2013). Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis, 103, 21–30.

    CAS  Google Scholar 

  • Jakab, E., Faix, O., Till, F., & Székely, T. (1995). Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. Journal of Analytical and Applied Pyrolysis, 35(2), 167–179.

    CAS  Google Scholar 

  • Jerrold, E. W., & Roger, M. R. (2005). Chemistry of wood strength (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kim, Y.-H., Lee, S.-M., Lee, H.-W., & Lee, J.-W. (2012). Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresource Technology, 116, 120–125.

    CAS  Google Scholar 

  • Kobayashi, H. (1976). Devolatilization of pulverized coal at high temperatures. Cambridge, MA: Dept. of Mechanical Engineering, Massachusetts Institute of Technology.

    Google Scholar 

  • Koukios, E. (1993). Progress in thermochemical, solid-state refining of biofuels — From research to commercialization. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 1678–1692). Netherlands: Springer.

    Google Scholar 

  • Lédé, J., Blanchard, F., & Boutin, O. (2002). Radiant flash pyrolysis of cellulose pellets: products and mechanisms involved in transient and steady state conditions. Fuel, 81(10), 1269–1279.

    Google Scholar 

  • Lee, J., Buchanan, A. C., III, Evans, B., & Kidder, M. (2013). Oxygenation of biochar for enhanced cation exchange capacity. In J. W. Lee (Ed.), Advanced biofuels and bioproducts (pp. 35–45). New York: Springer.

    Google Scholar 

  • Li, H., Qu, Y., & Xu, J. (2015). Microwave-assisted conversion of lignin. In Z. Fang, J. R. L. Smith, & X. Qi (Eds.), Production of biofuels and chemicals with microwave (3rd ed., pp. 61–82). Netherlands: Springer.

    Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., et al. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730.

    CAS  Google Scholar 

  • Lomax, J. A., Commandeur, J. M., Arisz, P. W., & Boon, J. J. (1991). Characterisation of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose. Journal of Analytical and Applied Pyrolysis, 19, 65–79.

    CAS  Google Scholar 

  • Lu, J.-J., & Chen, W.-H. (2013). Product yields and characteristics of corncob waste under various torrefaction atmospheres. Energies, 7(1), 13–27.

    CAS  Google Scholar 

  • Lu, Q., Yang, X.-C., Dong, C.-q., Zhang, Z.-f., Zhang, X.-M., & Zhu, X.-F. (2011). Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis, 92(2), 430–438.

    CAS  Google Scholar 

  • Lv, G.-J., Wu S.-B., & Lou R. (2010). Kinetic study for the thermal decomposition of hemicellulose isolated from corn stalk.

    Google Scholar 

  • Madorsky, S. L., Hart, V. E., & Straus, S. (1956). Pyrolysis of cellulose in a vacuum. Journal of Research of the National Bureau of Standards, 56(6), 343–354.

    CAS  Google Scholar 

  • Mamleev, V., Bourbigot, S., Le Bras, M., & Yvon, J. (2009). The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: Interdependence of the steps. Journal of Analytical and Applied Pyrolysis, 84(1), 1–17.

    CAS  Google Scholar 

  • McGrath, T. E., Chan, W. G., & Hajaligol, M. R. (2003). Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66(1–2), 51–70.

    CAS  Google Scholar 

  • Medic, D. (2012). Investigation of torrefaction process parameters and characterization of torrefied biomass. Iowa: Agricultural Engineering; Biorenewable Resources and Technology Ames, Iowa State University.

    Google Scholar 

  • Mei, Y., Liu, R., Yang, Q., Yang, H., Shao, J., Draper, C., et al. (2015). Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresource Technology, 177, 355–360.

    CAS  Google Scholar 

  • Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339.

    Google Scholar 

  • Mullen, C. A., & Boateng, A. A. (2011). Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 90(2), 197–203.

    CAS  Google Scholar 

  • Nachenius, R. W., Ronsse, F., Venderbosch, R. H., & Prins, W. (2013). Biomass pyrolysis. In M. Dmitry Yu (Ed.), Advances in chemical engineering (42nd ed., pp. 75–139). New York: Academic Press.

    Google Scholar 

  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.

    CAS  Google Scholar 

  • Neves, D., Thunman, H., Matos, A., Tarelho, L., & Gómez-Barea, A. (2011). Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science, 37(5), 611–630.

    CAS  Google Scholar 

  • Nunn, T. R., Howard, J. B., Longwell, J. P., & Peters, W. A. (1985a). Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Industrial & Engineering Chemistry Process Design and Development, 24(3), 844–852.

    CAS  Google Scholar 

  • Nunn, T. R., Howard, J. B., Longwell, J. P., & Peters, W. A. (1985b). Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Industrial & Engineering Chemistry Process Design and Development, 24(3), 836–844.

    CAS  Google Scholar 

  • Offrion, V. F. O. (1900). Improvements in the process of and apparatus for rationally and continuously treating or torrefying coffee. Great Britain, Offrion, V. F. O.

    Google Scholar 

  • Ohliger, A., Förster, M., & Kneer, R. (2013). Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 104, 607–613.

    CAS  Google Scholar 

  • Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil Science and Plant Nutrition, 13(4), 991–1002.

    Google Scholar 

  • Pastorova, I., Botto, R. E., Arisz, P. W., & Boon, J. J. (1994). Cellulose char structure: A combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research, 262(1), 27–47.

    CAS  Google Scholar 

  • Pettersen, R., Tshabalala, M. A., Han, J. S., Rowell, M. R., & Rowell, J. S. (2005). Cell wall chemistry (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246–1253.

    CAS  Google Scholar 

  • Pimchuai, A., Dutta, A., & Basu, P. (2010). Torrefaction of agriculture residue to enhance combustible properties. Energy & Fuels, 24(9), 4638–4645.

    CAS  Google Scholar 

  • Pohlmann, J. G., Osório, E., Vilela, A. C. F., Diez, M. A., & Borrego, A. G. (2014). Integrating physicochemical information to follow the transformations of biomass upon torrefaction and low-temperature carbonization. Fuel, 131, 17–27.

    CAS  Google Scholar 

  • Probstein, R. F., & Hicks, R. E. (2006). Synthetic fuels. Mineola, NY: NY, Dover Publications Inc.

    Google Scholar 

  • Raffelt, K., Henrich, E., Koegel, A., Stahl, R., Steinhardt, J., & Weirich, F. (2004). The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Applied Biochemistry and Biotechnology, 129(1-3), 153–164.

    Google Scholar 

  • Ralph, J., Peng, J., Lu, F., Hatfield, R. D., & Helm, R. F. (1999). Are lignins optically active? Journal of Agricultural and Food Chemistry, 47(8), 2991–2996.

    CAS  Google Scholar 

  • Reed, T., & Gaur, S. (1997). The high heat of fast pyrolysis for large particles. In A. V. Bridgwater & D. G. B. Boocock (Eds.), Developments in thermochemical biomass conversion (pp. 97–103). Netherlands: Springer.

    Google Scholar 

  • Repellin, V., Govin, A., Rolland, M., & Guyonnet, R. (2010). Energy requirement for fine grinding of torrefied wood. Biomass and Bioenergy, 34(7), 923–930.

    CAS  Google Scholar 

  • Rowell, R. M. (2005). Moisture properties (Handbook of wood chemistry and wood composites). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Saleh, S. B., Hansen, B. B., Jensen, P. A., & Dam-Johansen, K. (2013). Efficient fuel pretreatment: Simultaneous torrefaction and grinding of biomass. Energy & Fuels, 27(12), 7531–7540.

    CAS  Google Scholar 

  • Samolada, M. C., & Vasalos, I. A. (1991). A kinetic approach to the flash pyrolysis of biomass in a fluidized bed reactor. Fuel, 70(7), 883–889.

    CAS  Google Scholar 

  • Satpathy, S. K., Tabil, L. G., Meda, V., Naik, S. N., & Prasad, R. (2014). Torrefaction of wheat and barley straw after microwave heating. Fuel, 124, 269–278.

    CAS  Google Scholar 

  • Scheirs, J., Camino, G., & Tumiatti, W. (2001). Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal, 37(5), 933–942.

    CAS  Google Scholar 

  • Schobert, H. H. (2013). Chemistry of fossil fuels and biofuels. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 3(4), 283–305.

    CAS  Google Scholar 

  • Shang, L., Ahrenfeldt, J., Holm, J. K., Sanadi, A. R., Barsberg, S., Thomsen, T., et al. (2012). Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass and Bioenergy, 40, 63–70.

    CAS  Google Scholar 

  • Silakul, T., & Jindal, V. K. (2002). Equilibrium moisture content isotherms of mungbean. International Journal of Food Properties, 5(1), 25–35.

    Google Scholar 

  • Smith, B. R. J., Loganathan, M., & Shantha, M. S. (2010). A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering, 8(1).

    Google Scholar 

  • Smith, H. (1977). The molecular biology of plant cell wall. Berkeley: University of California Press.

    Google Scholar 

  • Sohi, S., Gaunt, J., & Atwood, J. (2013). Biochar in growing media: A sustainability and feasibility assessment. Edinburgh: UK Biochar Research Center.

    Google Scholar 

  • Stelte, W. (2014). Optimization of product specific processing parameters for the production of fuel pellets from torrefied biomass. Taastrup, Denmark: Center for Biomass and Biorefinery, Danish Technological Institute.

    Google Scholar 

  • Sule, I. (2012). Torrefaction behaviour of agricultural biomass. ON, Canada: School of Engineering Guelph, University of Guelph.

    Google Scholar 

  • Svoboda, K., Pohořelý, M., Hartman, M., & Martinec, J. (2009). Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology, 90(5), 629–635.

    CAS  Google Scholar 

  • Tchapda, A. H., & Pisupati, S. V. (2014). A review of thermal co-conversion of coal and biomass/waste. Energies, 7(3), 1098–1148.

    CAS  Google Scholar 

  • Thiel, F. C. (1897). New or improved roaster or torrefier for coffee and other vegetable substances. Great Britain, Thiel, F. C.

    Google Scholar 

  • Thunman, H., & Leckner, B. (2007). Thermo chemical conversion of biomass and wastes. Nordic graduate school BiofuelGS-2. Göteborg, Sweden: Chalmers.

    Google Scholar 

  • Thurner, F., & Mann, U. (1981). Kinetic investigation of wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 20(3), 482–488.

    CAS  Google Scholar 

  • Tumuluru, J. S., Hess, J. R., Boardman, R. D., Wright, C. T., & Westover, T. L. (2012). Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal. Industrial Biotechnology, 8(3), 113–132.

    CAS  Google Scholar 

  • Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242.

    Google Scholar 

  • van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748–3762.

    Google Scholar 

  • Varhegyi, G., Jakab, E., & Antal, M. J. (1994). Is the Broido-Shafizadeh model for cellulose pyrolysis true? Energy & Fuels, 8(6), 1345–1352.

    CAS  Google Scholar 

  • Wang, G., Luo, Y., Deng, J., Kuang, J., & Zhang, Y. (2011). Pretreatment of biomass by torrefaction. Chinese Science Bulletin, 56(14), 1442–1448.

    CAS  Google Scholar 

  • Wannapeera, J., Fungtammasan, B., & Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis, 92(1), 99–105.

    CAS  Google Scholar 

  • Wardrop, A. B. (1964). The structure and formation of the cell wall in xylem. In M. H. Zimmermann (Ed.), The formation of wood in forest trees (pp. 87–134). New York: Academic Press.

    Google Scholar 

  • Werner, K., Pommer, L., & Broström, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110, 130–137.

    CAS  Google Scholar 

  • Wichman, I., & Melaaen, M. (1993). Modeling the pyrolysis of cellulosic materials. In A. V. Bridgwater (Ed.), Advances in thermochemical biomass conversion (pp. 887–905). Netherlands: Springer.

    Google Scholar 

  • Wooten, J. B., Seeman, J. I., & Hajaligol, M. R. (2003). Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model. Energy & Fuels, 18(1), 1–15.

    Google Scholar 

  • Xue, G., Kwapinska, M., Kwapinski, W., Czajka, K. M., Kennedy, J., & Leahy, J. J. (2014). Impact of torrefaction on properties of Miscanthus giganteus relevant to gasification. Fuel, 121, 189–197.

    CAS  Google Scholar 

  • Yan, W., Acharjee, T. C., Coronella, C. J., & Vásquez, V. R. (2009). Thermal pretreatment of lignocellulosic biomass. Environmental Progress & Sustainable Energy, 28(3), 435–440.

    CAS  Google Scholar 

  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.

    CAS  Google Scholar 

  • Zaror, C. A., & Pyle, D. L. (1986). Competitive reactions model for the pyrolysis of lignocellulose: A critical study. Journal of Analytical and Applied Pyrolysis, 10(1), 1–12.

    CAS  Google Scholar 

  • Zulfiqar, M., Moghtaderi, B., & Wall, T. F. (2006). Flow properties of biomass and coal blends. Fuel Processing Technology, 87, 281–288.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarma V. Pisupati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pisupati, S.V., Tchapda, A.H. (2015). Thermochemical Processing of Biomass. In: Ravindra, P. (eds) Advances in Bioprocess Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17915-5_15

Download citation

Publish with us

Policies and ethics