Skip to main content

Artificial Intelligence Techniques in Human Resource Management—A Conceptual Exploration

  • Chapter
  • First Online:
Intelligent Techniques in Engineering Management

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 87))

Abstract

Artificial Intelligence Techniques and its subset, Computational Intelligence Techniques, are not new to Human Resource Management, and since their introduction, a heterogeneous set of suggestions on how to use Artificial Intelligence and Computational Intelligence in Human Resource Management has accumulated. While such contributions offer detailed insights into specific application possibilities, an overview of the general potential is missing. Therefore, this chapter offers a first exploration of the general potential of Artificial Intelligence Techniques in Human Resource Management . To this end, a brief foundation elaborates on the central functionalities of Artificial Intelligence Techniques and the central requirements of Human Resource Management based on the task-technology fit approach. Based on this, the potential of Artificial Intelligence in Human Resource Management is explored in six selected scenarios (turnover prediction with artificial neural networks , candidate search with knowledge-based search engines, staff rostering with genetic algorithms , HR sentiment analysis with text mining , résumé data acquisition with information extraction and employee self-service with interactive voice response ). The insights gained based on the foundation and exploration are discussed and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abburu, S.: A Survey on ontology reasoners and comparison. Int. J. Comput. Appl. 57(17), 33–39 (2012)

    Google Scholar 

  • Aggarwal, C.C., Zhai, C.X.: An introduction to text mining. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 1–10. Springer, Berlin (2012)

    Chapter  Google Scholar 

  • Aickelin, U., Dowsland, K.A.: Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. J. Sched. 3(3), 139–153 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Aqel, D., Vadera, S.: A framework for employee appraisals based on sentiment analysis. In: Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications (2010)

    Google Scholar 

  • Benesty, J., Sondhi, M.M., Huang, Y.A.: Introduction to speech processing. In: Benesty, J., Sondhi, M.M., Huang, Y. (eds.) Springer Handbook of Speech Processing, pp. 1–4. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Bock, J., Haase, P., Ji, Q., Volz, R.: Benchmarking OWL reasoners. In: Proceedings of the ARea2008 Workshop, Tenerife, Spain, June (2008)

    Google Scholar 

  • Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kaufmann, Burlington (2004)

    Google Scholar 

  • Brindha, G.R., Santhi, B.: Application of opinion mining technique in talent management. In: Proceedings of 2012 International Conference on Management Issues in Emerging Economies (ICMIEE), pp. 127–132 (2012)

    Google Scholar 

  • Burgard, M., Piazza, F.: Data warehouse and business intelligence systems in the context of e-HRM. In: Torres-Coronas, T., Arias-Oliva, M. (eds.) Encyclopedia of HRIS: Challenges in e-HRM, pp. 223–229. Hershey, PA (2009)

    Google Scholar 

  • Çelik, D., Elçi, A.: An ontology-based information extraction approach for résumés. In: Zu, Q., Hu, Q., Elçi, A. (eds.) Pervasive Computing and the Networked World, Joint International Conference ICPCA/SWS 2012, pp. 165–179. LNCS 7719, Springer, Berlin (2013)

    Google Scholar 

  • Chien, C.F., Chen, L.F.: Data mining to improve personnel selection and enhance human capital: a case study in high-technology industry. Expert Syst. Appl. 34(1), 280–290 (2008)

    Article  Google Scholar 

  • Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag. 14(1), 17–33 (1993)

    Google Scholar 

  • Deng, L., Li, X.: Machine learning paradigms for speech recognition: an overview. IEEE Trans. Audio Speech Lang. Process. 21(5), 1–30 (2013)

    Article  Google Scholar 

  • Devanna, M.A., Fombrun, C.J., Tichy, N.: A framework for strategic human resource management. In: Fombrun, C.J., Tichy, N., Devanna, M.A. (eds.) Strategic Human Resource Management, pp. 33–51. Wiley, New York (1984)

    Google Scholar 

  • Duch, W.: What is Computational Intelligence and where is it going? Challenges for Computational Intelligence, pp. 1–13. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Fan, C.Y., Fan, P.S., Chan, T.Y., Chang, S.H.: Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals. Expert Syst. Appl. 39(10), 8844–8851 (2012)

    Article  Google Scholar 

  • Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 36–53 (1996)

    Google Scholar 

  • Furneaux, B.: Task-technology fit theory: a survey and synopsis of the literature. In-formation Systems Theory, pp. 87–106. Springer, New York (2012)

    Chapter  Google Scholar 

  • Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. MIS Q. 19(2), 213–236 (1995)

    Article  Google Scholar 

  • Giotopoulos, K.C., Alexakos, C.E., Beligiannis, G.N., Likothanassis, S.D.: Integrating agents and computational intelligence techniques in E-learning environments. Int. J. Soc. Hum. Sci. Eng. 1(7), 412–419 (2007)

    Google Scholar 

  • Gonçalves, J.F., de Magalhães Mendes, J.J., Resende, M.G.C.: A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167(1), 77–95 (2005)

    Article  MATH  Google Scholar 

  • Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 1–17. Springer, Berlin (2009)

    Chapter  Google Scholar 

  • Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th ACM International conference on World Wide Web, pp. 700–709. May 2003

    Google Scholar 

  • Gulzar, T., Singh, A., Rajoriya, D.K., Farooq, N.: A systematic analysis of automatic speech recognition: an overview. Int. J. Curr. Eng. Technol. 4(3), 1664–1675 (2014)

    Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3(5), 551–560 (1990)

    Article  Google Scholar 

  • Inoue, Y.: Intelligent human resource management system: applications of expert system technology. Int. J. Appl. Expert Syst. 1(3), 213 (1993)

    Google Scholar 

  • Jackson, S.E., Schuler, R.S., Jiang, K.: An aspirational framework for strategic human resource management. Acad. Manage. Ann. 8(1), 1–56 (2014)

    Article  Google Scholar 

  • Janev, V., Vraneš, S.: Applicability assessment of semantic web technologies in human resources domain. Inf. Res. Manage. J. 23(3), 27–42 (2010)

    Article  Google Scholar 

  • Jantan, H., Hamdan, A.R., Othman, Z.A.: Intelligent techniques for decision support system in human resource management. In: Devlin, G. (ed.) Decision Support Systems, Advances in, pp. 261–276. InTech, Rijeka (2010)

    Google Scholar 

  • Jiang, J.: Information extraction from text. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 11–41. Springer, New York (2012)

    Chapter  Google Scholar 

  • Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice Hall, Pearson (2008)

    Google Scholar 

  • Kaczmarek, T., Kowalkiewicz, M., Pikorski, J: Information Extraction from CV. In: Proceedings of the 8th International Conference on Business Information Systems, pp. 3–7 (2005)

    Google Scholar 

  • Kahraman, C., Kaya, I., Çevikcan, E.: Intelligence decision systems in enterprise information management. J. Enterp. Inf. Manage. 24(4), 360–379 (2011)

    Article  Google Scholar 

  • Kahraman, C., Kaya, I., Çinar, D.: Computational intelligence: past, today, and future. In: Ruan, D. (ed.) Computational Intelligence in Complex Decision Systems, pp. 1–46. Atlantis Press, Paris (2010)

    Google Scholar 

  • Karamatli, E., Akyokus, S.: Resume information extraction with named entity clustering based on relationships. In: International Symposium on Innovations in Intelligent Systems and Applications (2010)

    Google Scholar 

  • Kim, S., Ko, Y., Uhmn, S., Kim, J.: A strategy to improve performance of genetic algorithm for nurse scheduling problem. Int. J. Soft. Eng. Appl. 8(1), 53–62 (2014)

    Google Scholar 

  • Lawler, J.J., Elliot, R.: Artificial intelligence in HRM: an experimental study of an expert system. J. Manag. 22(1), 85–111 (1996)

    Google Scholar 

  • Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6(6), 861–867 (1993)

    Article  Google Scholar 

  • Linoff, G.S., Berry, M.J.A.: Data Mining Techniques. Wiley, Indianapolis (2011)

    Google Scholar 

  • Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 415–463. Springer, Berlin (2012)

    Chapter  Google Scholar 

  • Luger, G.F.: Artificial intelligence: Structures and strategies for complex problem solving. Pearson education, Edinburgh (2005)

    Google Scholar 

  • Mangold, C.: A survey and classification of semantic search approaches. Int. J. Metadata Semant. Ontol. 2(1), 23–34 (2007)

    Article  Google Scholar 

  • Marler, J.H., Fisher, S.L., Ke, W.: Employee self-service technology acceptance: a comparison of pre-implementation and post-implementation relationships. Pers. Psychol. 62(2), 327–358 (2009)

    Article  Google Scholar 

  • Mochol, M., Jentzsch, A., Wache, H.: Suitable employees wanted? Find them with semantic techniques. In: Proceedings of Workshop on Making Semantics Web For Business at European Semantic Technology Conference (ESTC2007), Vienna, Austria (2007)

    Google Scholar 

  • Moz, M., Vaz Pato, M.: A genetic algorithm approach to a nurse rerostering problem. Comput. Oper. Res. 34(3), 667–691 (2007)

    Article  MATH  Google Scholar 

  • Ontology Outreach Advisory: HR semantics roadmap. The Semantic Challenges and Opportunities in the Human Resource domain. White Paper (2007)

    Google Scholar 

  • Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  • Quinn, A., Rycraft, J.R., Schoech, D.: Building a model to predict caseworker and supervisor turnover using a neural network and logistic regression. J. Technol. Hum. Serv. 19(4), 65–85 (2002)

    Article  Google Scholar 

  • Rojas, R.: Neural Networks—A Systematic Introduction. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377 (2008)

    Article  Google Scholar 

  • Schroeter, J.: Basic principles of speech synthesis. In: Benesty, J., Sondhi, M.M., Huang, Y. (eds.) Springer Handbook of Speech Processing, pp. 413–428. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Sen, A., Das, A., Ghosh, K., Ghosh, S.: Screener: a system for extracting education related information from resumes using text based information extraction system. In: International Conference on Computer and Software Modeling, vol. 54, pp. 31–35 (2012)

    Google Scholar 

  • Sexton, R.S., McMurtrey, S., Michalopoulos, J.O., Smith, A.M.: Employee turnover: a neural network solution. Comput. Oper. Res. 32(10), 2635–2651 (2005)

    Article  MATH  Google Scholar 

  • Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  • Somers, M.J.: Application of two neural network paradigms to the study of voluntary employee turnover. J. Appl. Psychol. 84(2), 177–185 (1999)

    Article  Google Scholar 

  • Souai, N., Teghem, J.: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem. Eur. J. Oper. Res. 199(3), 674–683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Strohmeier, S., Piazza, F.: Informating HRM: a comparison of data querying and data mining. Int. J. Bus. Inf. Syst. 5(2), 186–197 (2010)

    Google Scholar 

  • Strohmeier, S., Piazza, F.: Domain driven data mining in human resource management: a review of current research. Expert Syst. Appl. 40(7), 2410–2420 (2013)

    Article  Google Scholar 

  • Strohmeier, S., Piazza, F., Neu, C.: Trends der human resource intelligence und analytics. In: Strohmeier, S. Piazza, F. (eds.) Human Resource Intelligence und Analytics. Grundlagen, Anbieter, Erfahrungen und Trends, pp. 338–367. Springer Gabler, Wiesbaden (2015)

    Google Scholar 

  • Strohmeier, S., Gasper, C., Müller, D.: Entwicklung und Evaluation semantischer Jobportale - Ein “Design Science“- Ansatz. In: Heiß, H.-U., Pepper, P., Schlingloff, H., & Schneider, J. (eds.) Proceedings INFORMATIK 2011 (LNI 192), Berlin, 137–155 (2011)

    Google Scholar 

  • Tanwar, P., Prasad, T.V., Aswal, M.S.: Comparative study of three declarative knowledge representation techniques. Int. J. Comput. Sci. Eng. 2(07), 2274–2281 (2010)

    Google Scholar 

  • Wang, P.: What do you mean by “AI”? In: Artificial General Intelligence, 2008: Proceedings of the First AGI Conference, vol. 171, p. 362. IOS Press (2008)

    Google Scholar 

  • Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  • Wolf, A., Jenkins, A.: Explaining greater test use for selection: The role of HR professionals in a world of expanding regulation. Hum. Resour. Manage. J. 16(2), 193–213 (2006)

    Article  Google Scholar 

  • Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Google Scholar 

  • Yu, K., Guan, G., Zhou, M.: Resume information extraction with cascaded hybrid model. In: Proceedings of the 43rd Annual Meeting of the ACL, pp. 499–506 (2005)

    Google Scholar 

  • Zuboff, S.: Automate/informate: the two faces of intelligent technology. Org. Dyn. 14(2), 5–18 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Strohmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strohmeier, S., Piazza, F. (2015). Artificial Intelligence Techniques in Human Resource Management—A Conceptual Exploration. In: Kahraman, C., Çevik Onar, S. (eds) Intelligent Techniques in Engineering Management. Intelligent Systems Reference Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-17906-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17906-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17905-6

  • Online ISBN: 978-3-319-17906-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics