Abstract
Artificial Intelligence Techniques and its subset, Computational Intelligence Techniques, are not new to Human Resource Management, and since their introduction, a heterogeneous set of suggestions on how to use Artificial Intelligence and Computational Intelligence in Human Resource Management has accumulated. While such contributions offer detailed insights into specific application possibilities, an overview of the general potential is missing. Therefore, this chapter offers a first exploration of the general potential of Artificial Intelligence Techniques in Human Resource Management . To this end, a brief foundation elaborates on the central functionalities of Artificial Intelligence Techniques and the central requirements of Human Resource Management based on the task-technology fit approach. Based on this, the potential of Artificial Intelligence in Human Resource Management is explored in six selected scenarios (turnover prediction with artificial neural networks , candidate search with knowledge-based search engines, staff rostering with genetic algorithms , HR sentiment analysis with text mining , résumé data acquisition with information extraction and employee self-service with interactive voice response ). The insights gained based on the foundation and exploration are discussed and summarized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abburu, S.: A Survey on ontology reasoners and comparison. Int. J. Comput. Appl. 57(17), 33–39 (2012)
Aggarwal, C.C., Zhai, C.X.: An introduction to text mining. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 1–10. Springer, Berlin (2012)
Aickelin, U., Dowsland, K.A.: Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. J. Sched. 3(3), 139–153 (2000)
Aqel, D., Vadera, S.: A framework for employee appraisals based on sentiment analysis. In: Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications (2010)
Benesty, J., Sondhi, M.M., Huang, Y.A.: Introduction to speech processing. In: Benesty, J., Sondhi, M.M., Huang, Y. (eds.) Springer Handbook of Speech Processing, pp. 1–4. Springer, Berlin (2008)
Bock, J., Haase, P., Ji, Q., Volz, R.: Benchmarking OWL reasoners. In: Proceedings of the ARea2008 Workshop, Tenerife, Spain, June (2008)
Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kaufmann, Burlington (2004)
Brindha, G.R., Santhi, B.: Application of opinion mining technique in talent management. In: Proceedings of 2012 International Conference on Management Issues in Emerging Economies (ICMIEE), pp. 127–132 (2012)
Burgard, M., Piazza, F.: Data warehouse and business intelligence systems in the context of e-HRM. In: Torres-Coronas, T., Arias-Oliva, M. (eds.) Encyclopedia of HRIS: Challenges in e-HRM, pp. 223–229. Hershey, PA (2009)
Çelik, D., Elçi, A.: An ontology-based information extraction approach for résumés. In: Zu, Q., Hu, Q., Elçi, A. (eds.) Pervasive Computing and the Networked World, Joint International Conference ICPCA/SWS 2012, pp. 165–179. LNCS 7719, Springer, Berlin (2013)
Chien, C.F., Chen, L.F.: Data mining to improve personnel selection and enhance human capital: a case study in high-technology industry. Expert Syst. Appl. 34(1), 280–290 (2008)
Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag. 14(1), 17–33 (1993)
Deng, L., Li, X.: Machine learning paradigms for speech recognition: an overview. IEEE Trans. Audio Speech Lang. Process. 21(5), 1–30 (2013)
Devanna, M.A., Fombrun, C.J., Tichy, N.: A framework for strategic human resource management. In: Fombrun, C.J., Tichy, N., Devanna, M.A. (eds.) Strategic Human Resource Management, pp. 33–51. Wiley, New York (1984)
Duch, W.: What is Computational Intelligence and where is it going? Challenges for Computational Intelligence, pp. 1–13. Springer, Berlin (2007)
Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004)
Fan, C.Y., Fan, P.S., Chan, T.Y., Chang, S.H.: Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals. Expert Syst. Appl. 39(10), 8844–8851 (2012)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 36–53 (1996)
Furneaux, B.: Task-technology fit theory: a survey and synopsis of the literature. In-formation Systems Theory, pp. 87–106. Springer, New York (2012)
Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. MIS Q. 19(2), 213–236 (1995)
Giotopoulos, K.C., Alexakos, C.E., Beligiannis, G.N., Likothanassis, S.D.: Integrating agents and computational intelligence techniques in E-learning environments. Int. J. Soc. Hum. Sci. Eng. 1(7), 412–419 (2007)
Gonçalves, J.F., de Magalhães Mendes, J.J., Resende, M.G.C.: A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167(1), 77–95 (2005)
Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 1–17. Springer, Berlin (2009)
Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th ACM International conference on World Wide Web, pp. 700–709. May 2003
Gulzar, T., Singh, A., Rajoriya, D.K., Farooq, N.: A systematic analysis of automatic speech recognition: an overview. Int. J. Curr. Eng. Technol. 4(3), 1664–1675 (2014)
Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3(5), 551–560 (1990)
Inoue, Y.: Intelligent human resource management system: applications of expert system technology. Int. J. Appl. Expert Syst. 1(3), 213 (1993)
Jackson, S.E., Schuler, R.S., Jiang, K.: An aspirational framework for strategic human resource management. Acad. Manage. Ann. 8(1), 1–56 (2014)
Janev, V., Vraneš, S.: Applicability assessment of semantic web technologies in human resources domain. Inf. Res. Manage. J. 23(3), 27–42 (2010)
Jantan, H., Hamdan, A.R., Othman, Z.A.: Intelligent techniques for decision support system in human resource management. In: Devlin, G. (ed.) Decision Support Systems, Advances in, pp. 261–276. InTech, Rijeka (2010)
Jiang, J.: Information extraction from text. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 11–41. Springer, New York (2012)
Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice Hall, Pearson (2008)
Kaczmarek, T., Kowalkiewicz, M., Pikorski, J: Information Extraction from CV. In: Proceedings of the 8th International Conference on Business Information Systems, pp. 3–7 (2005)
Kahraman, C., Kaya, I., Çevikcan, E.: Intelligence decision systems in enterprise information management. J. Enterp. Inf. Manage. 24(4), 360–379 (2011)
Kahraman, C., Kaya, I., Çinar, D.: Computational intelligence: past, today, and future. In: Ruan, D. (ed.) Computational Intelligence in Complex Decision Systems, pp. 1–46. Atlantis Press, Paris (2010)
Karamatli, E., Akyokus, S.: Resume information extraction with named entity clustering based on relationships. In: International Symposium on Innovations in Intelligent Systems and Applications (2010)
Kim, S., Ko, Y., Uhmn, S., Kim, J.: A strategy to improve performance of genetic algorithm for nurse scheduling problem. Int. J. Soft. Eng. Appl. 8(1), 53–62 (2014)
Lawler, J.J., Elliot, R.: Artificial intelligence in HRM: an experimental study of an expert system. J. Manag. 22(1), 85–111 (1996)
Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6(6), 861–867 (1993)
Linoff, G.S., Berry, M.J.A.: Data Mining Techniques. Wiley, Indianapolis (2011)
Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 415–463. Springer, Berlin (2012)
Luger, G.F.: Artificial intelligence: Structures and strategies for complex problem solving. Pearson education, Edinburgh (2005)
Mangold, C.: A survey and classification of semantic search approaches. Int. J. Metadata Semant. Ontol. 2(1), 23–34 (2007)
Marler, J.H., Fisher, S.L., Ke, W.: Employee self-service technology acceptance: a comparison of pre-implementation and post-implementation relationships. Pers. Psychol. 62(2), 327–358 (2009)
Mochol, M., Jentzsch, A., Wache, H.: Suitable employees wanted? Find them with semantic techniques. In: Proceedings of Workshop on Making Semantics Web For Business at European Semantic Technology Conference (ESTC2007), Vienna, Austria (2007)
Moz, M., Vaz Pato, M.: A genetic algorithm approach to a nurse rerostering problem. Comput. Oper. Res. 34(3), 667–691 (2007)
Ontology Outreach Advisory: HR semantics roadmap. The Semantic Challenges and Opportunities in the Human Resource domain. White Paper (2007)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)
Quinn, A., Rycraft, J.R., Schoech, D.: Building a model to predict caseworker and supervisor turnover using a neural network and logistic regression. J. Technol. Hum. Serv. 19(4), 65–85 (2002)
Rojas, R.: Neural Networks—A Systematic Introduction. Springer, Berlin (1996)
Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377 (2008)
Schroeter, J.: Basic principles of speech synthesis. In: Benesty, J., Sondhi, M.M., Huang, Y. (eds.) Springer Handbook of Speech Processing, pp. 413–428. Springer, Berlin (2008)
Sen, A., Das, A., Ghosh, K., Ghosh, S.: Screener: a system for extracting education related information from resumes using text based information extraction system. In: International Conference on Computer and Software Modeling, vol. 54, pp. 31–35 (2012)
Sexton, R.S., McMurtrey, S., Michalopoulos, J.O., Smith, A.M.: Employee turnover: a neural network solution. Comput. Oper. Res. 32(10), 2635–2651 (2005)
Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Heidelberg (2008)
Somers, M.J.: Application of two neural network paradigms to the study of voluntary employee turnover. J. Appl. Psychol. 84(2), 177–185 (1999)
Souai, N., Teghem, J.: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem. Eur. J. Oper. Res. 199(3), 674–683 (2009)
Strohmeier, S., Piazza, F.: Informating HRM: a comparison of data querying and data mining. Int. J. Bus. Inf. Syst. 5(2), 186–197 (2010)
Strohmeier, S., Piazza, F.: Domain driven data mining in human resource management: a review of current research. Expert Syst. Appl. 40(7), 2410–2420 (2013)
Strohmeier, S., Piazza, F., Neu, C.: Trends der human resource intelligence und analytics. In: Strohmeier, S. Piazza, F. (eds.) Human Resource Intelligence und Analytics. Grundlagen, Anbieter, Erfahrungen und Trends, pp. 338–367. Springer Gabler, Wiesbaden (2015)
Strohmeier, S., Gasper, C., Müller, D.: Entwicklung und Evaluation semantischer Jobportale - Ein “Design Science“- Ansatz. In: Heiß, H.-U., Pepper, P., Schlingloff, H., & Schneider, J. (eds.) Proceedings INFORMATIK 2011 (LNI 192), Berlin, 137–155 (2011)
Tanwar, P., Prasad, T.V., Aswal, M.S.: Comparative study of three declarative knowledge representation techniques. Int. J. Comput. Sci. Eng. 2(07), 2274–2281 (2010)
Wang, P.: What do you mean by “AI”? In: Artificial General Intelligence, 2008: Proceedings of the First AGI Conference, vol. 171, p. 362. IOS Press (2008)
Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
Wolf, A., Jenkins, A.: Explaining greater test use for selection: The role of HR professionals in a world of expanding regulation. Hum. Resour. Manage. J. 16(2), 193–213 (2006)
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)
Yu, K., Guan, G., Zhou, M.: Resume information extraction with cascaded hybrid model. In: Proceedings of the 43rd Annual Meeting of the ACL, pp. 499–506 (2005)
Zuboff, S.: Automate/informate: the two faces of intelligent technology. Org. Dyn. 14(2), 5–18 (1985)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Strohmeier, S., Piazza, F. (2015). Artificial Intelligence Techniques in Human Resource Management—A Conceptual Exploration. In: Kahraman, C., Çevik Onar, S. (eds) Intelligent Techniques in Engineering Management. Intelligent Systems Reference Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-17906-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-17906-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17905-6
Online ISBN: 978-3-319-17906-3
eBook Packages: EngineeringEngineering (R0)