Skip to main content

Argumentative SOX Compliant and Intelligent Decision Support Systems for the Suppliers Contracting Process

  • Chapter
  • First Online:
Intelligent Techniques in Engineering Management

Abstract

More and more our society is linked to the stability of financial markets and this stability depends on key players like private companies, financial markets, investors, analysts, government control agencies and so on. Sarbanes-Oxley Act is a mandatory law in EEUU market and a facto standard in rest of the world and has as main objective to keep the desire financial stability. Within this chapter it will be shown a new decision support intelligent financial model over SOX compatibility based on Artificial Intelligent technology together with Theory of Argumentation . The main aim of this model is to help and support private companies, auditors, executive boards and regulatory bodies to take a SOX compliant decision over an specific process of a typical purchasing financial cycle: The Contracting Process. The decision will be supported by the whole argumentation process drive by this model and will be reinforce with quality measures with the final objective to create a very clear argumentative background about the suggested decision. This model directly contributes to both scientific research artificial intelligence area and business sector. From business perspective it empowers the use of intelligent models and techniques to drive decision making over financial statements. From scientific and research area the impact is based on the combination of the following innovative elements: (1) an specific Information Seeking Dialog Protocol, (2) a Facts Valuation based Protocol in which previous gathered facts are analyzed, (3) the already incorporated initial knowledge coming from human expert knowledge, (4) the Intra-Agent Decision Making Protocol based on deductive argumentation and (5) the Semi Automated Fuzzy Dynamic Knowledge Learning Protocol giving as a result a novel approach to this kind of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alden, M., Bryan, D., Lessley, B., Tripathy, A.: Detection of financial statement fraud using evolutionary algorithms. J. Emerg. Technol. Account. 9(1), 71–94 (2012)

    Google Scholar 

  • Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In: Proceedings of the 4th International Conference on Multi-Agent Systems (ICMAS’2000), pp. 31–38 (2000)

    Google Scholar 

  • Amgoud, L.: A Unified setting for inference and decision: an argumentation-based approach. ArXiv Preprint 12071363 (2012)

    Google Scholar 

  • Amgoud, L.: Postulates for logic-based argumentation systems. Int. J. Approximate Reasoning 55, 2028–2048 (2013)

    Google Scholar 

  • Atkinson, K., Bench-Capon, T., Walton, D.: Distinctive features of persuasion and deliberation dialogues. Argument Comput. 4(2), 105–127 (2013)

    Google Scholar 

  • Azhar, M., Parsons, S., Sklar, E.: An Argumentation-based dialogue system for human-robot collaboration. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 1353–1354 (2013)

    Google Scholar 

  • Belesiotis, A., Rovatsos, M., Rahwan, I.: A generative dialogue system for arguing about plans in situation calculus. In: Proceedings of the Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ARGMAS’09), vol. 6057, pp. 23–41. Springer, Berlin, Germany (2010)

    Google Scholar 

  • Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press, Cambridge (2008)

    Book  Google Scholar 

  • Boella, G., Hulstijn, J., Torre, L.: A logic of abstract argumentation. In: Proceedings of the Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’06), vol. 4049, pp. 29–41. Springer, Berlin, Germany (2006)

    Google Scholar 

  • Capera, D., Georgé, P.J., Gleizes, M.P., Glize, P.: Emergence of organisations, emergence of functions. In: AISB03 Convention, Symposium on Adaptive Agents and Multi-Agent Systems, pp. 103–108 (2003)

    Google Scholar 

  • Capobianco, M., Chesñevar, C., Simari, G.: An argument based framework to model an agent’s beliefs in a dynamic enviroment. In: Proceedings of the 1st International Workshop, Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’04), vol. 3366, pp. 95–110. Springer, Berlin, Germany (2004)

    Google Scholar 

  • Changchit, C., Holsapple, C., Madden, D.: Positive impacts of an intelligent system on internal control problem recognition. In: Proceedings of the 32nd Hawaii International Conference on System Sciences (HICSS’99), vol. 6, p. 10 (1999)

    Google Scholar 

  • Changchit, C., Holsapple, C.W.: The development of an expert system for managerial evaluation of internal controls. Intell. Syst. Account. Fin. Manage. 12(2), 103–120 (2004)

    Article  Google Scholar 

  • Chen, F., Sutchliffe, C.: Pricing and Hedging Short Sterling Options using Neural Networks. Intelligent Systems in Accounting, pp. 128–149. Wiley, New York (2012)

    Google Scholar 

  • Coakley, J., Gammill, L., Brown, C.: Artificial neural networks in accounting and finance: modelling issues. Int. J. Intell. Syst. Account. Fin. Manage. 9(2), 119–144 (1995)

    Article  Google Scholar 

  • Cogan, E., Parsons, S., McBurney, P.: New types of interagent dialogues. In: Proceedings of the Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’05), vol. 4049, pp. 154–168. Springer, Berlin, Germany (2005)

    Google Scholar 

  • Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning technology. Int. J. Intell. Syst. 18(12), 1227–1241 (2003)

    Article  Google Scholar 

  • Corchado, J.M., Laza, R., Borrajo, L., et al.: Increasing the autonomy of deliberative agents with a case-based reasoning system. Int. J. Comput. Intell. Appl. World Sci. 3(1), 101–118 (2003)

    Article  Google Scholar 

  • Deshmukh, A., Talluru, L.: A rule-based fuzzy reasoning system for assessing the risk of management fraud. Intell. Syst. Account. Fin. Manage. 7(4), 223–241 (1998)

    Article  Google Scholar 

  • Devereux, J., Reed, C.: Strategic argumentation in rigorous persuasion dialogue. In: Proceedings of the Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ARGMAS’09), vol. 6057, pp. 94–113. Springer, Berlin, Germany (2009)

    Google Scholar 

  • Dimpoulos, Y., Nebel, B., Toni, F.: Preferred arguments are harder to compute than stable extensions. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99), vol. 16, pp. 36–43. Lawrence Erlbaum Associated LTD (1999)

    Google Scholar 

  • Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Google Scholar 

  • Esteva, M., Rodriguez, J., Sierra, C., Garcia, P., Arcos, J.: On the formal specifications of electronic institutions. Agent Mediated Electron. Commer. 1991, 126–147 (2001)

    Article  Google Scholar 

  • Fanning, K.M., Cogger, K.O.: Neural network detection of management fraud using published financial data. Int. J. Intell. Syst. Account. Fin. Manage. 7(1), 21–41 (1998)

    Article  Google Scholar 

  • Fanning, K., Cogger, K.: A comparative analysis of artificial neural networks using financial distress prediction. Int. J. Intell. Syst. Account. Fin. Manage. 3, 241–252 (1994)

    Google Scholar 

  • Fernandez, J.A., Martin Q., Corchado, J.M.: Argumentative SOX compliance and quality decision support intelligent expert system over the purchase orders approval process, Appl. Math. Comput. Sci. 4(4), 215–268 (2013a). ISSN 0976-1586

    Google Scholar 

  • Fernandez, J.A., Martin Q., Corchado, J.M.: Argumentative SOX compliant and quality decision support intelligent expert system over the suppliers selection process. Appl. Comput. Intell. Softw. Comput. 2013(973704), 23 pp (2013b). doi:10.1155/2013/973704

  • Fernandez, J.A., Martin, Q., Corchado, J.M.: Business intelligence expert system on SOX compliance over the purchase orders creation process. Intell. Inf. Manage. 5(3), 49–72 (2013c). doi:10.4236/iim.2013.53007, ISSN 2160-5912, 2160-5920

  • Fernandez, J.A., Martin, Q., Corchado, J.M.: Decision making intelligent agent on SOX compliance over the goods receipt process. Comput. Eng. Intell. Syst. 4(10), 1–18 (2013d). ISSN 2222-1719, 2222-2863

    Google Scholar 

  • Fox, J., Krause, P., Ambler, S.: Arguments, contradictions and practical reasoning. In: Proceedings of the 10th European Conference on Artificial Intelligence (ECAI’92), pp. 623–627. Wiley, New York (1992)

    Google Scholar 

  • Fukumoto, T., Sawamura, H.: Argumentation-based learning. In: Proceedings of the 3rd International Workshop, Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’06), vol. 4766, pp. 17–35. Springer, Berlin, Germany (2006)

    Google Scholar 

  • Gabbriellini, S., Torroni, P.: NetArg: an agent-based social simulator with argumentative agents. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multiagent Systems, pp. 1365–1366 (2013)

    Google Scholar 

  • Gabbriellini, S., Torroni, P.: A New Framework for ABMs based on Argumentative Reasoning. Advances in Social Simulation, pp. 25–36. Springer, Berlin (2014)

    Google Scholar 

  • Gholipour, R., Jandaghi, G., Rajaei, R.: Contractor selection in MCMD context using fuzzy AHP. Iran. J. Manage. Stud. 7(1), 151–173 (2014)

    Google Scholar 

  • Ho, G., Lp, W., Wu, C., Tse, Y.: Using a fuzzy association rule mining approach to identify the financial data association. Expert Syst. Appl. 39(10), 9054–9063 (2012)

    Google Scholar 

  • Hubner, J.F., Sichman, J.S., Boissier, O.: Using the Moise+ for a cooperative framework of MAS reorganisation. Lecture Notes in Computer Science, vol. 3171, pp. 506–515 (2004)

    Google Scholar 

  • Kakas, A., Maudet, N., Moraitis, P.: Layered strategies and protocols for argumentation-based agent interaction. In: Proceedings of the 1st InternationalWorkshop on Argumentation in Multi-Agent Systems (ArgMAS’04), pp. 64–77, July 2004

    Google Scholar 

  • Korvin, A., Shipley, M., Omer, K.: Assessing risks due to threats to internal control in a computer-based accounting information system: a pragmatic approach based on fuzzy set theory. Intell. Syst. Account. Fin. Manage. 12(2), 139–152 (2004)

    Article  Google Scholar 

  • Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation: a logical model and Implementation. Artif. Intell. 104(1–2), 1–69 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Krause, P., Ambler, S., Elvang-Goransson, M., Fox, J.: A logic of argumentation for reasoning under uncertainty. Comput. Intell. 11(1), 113–131 (1995)

    Article  MathSciNet  Google Scholar 

  • Kumar, A., Liu, R.: A rule-based framework using role patterns for business process compliance. In: Proceedings of the International Symposium on Rule Representation, Interchange and Reasoning on the Web, Lecture Notes in Computer Science (RuleML’08), vol. 5321, pp. 58–72. Springer, Berlin, Germany (2008)

    Google Scholar 

  • Li, X., Krause, A.: An Evolutionary Multi-Objective Optimization of Trading Rules in Call Markets. Intelligent Systems in Accounting, pp. 1–14. Wiley, New York (2011)

    Google Scholar 

  • Liu, F., Tang, R., Song, Y.: Information fusion oriented fuzzy comprehensive evaluation model on enterprises’ internal control enviroment. In: Proceedings of the Asia-Pacific Conference on Information (APCIP’09), vol. 1, pp. 32–34 (2009)

    Google Scholar 

  • Marghescu, D., Sarlin, P., Liu, S.: Early-Warning Analysis for Currency Crises in Emerging Markets: A Revisit with Fuzzy Clustering. Intelligent Systems in Accounting, pp. 143–165. Wiley, New York (2012)

    Google Scholar 

  • Matt, P., Toni, F., Vaccari, J.: Dominant decisions by argumentation agents. In: Proceedings of the Argumentation inMulti-Agent Systems, Lecture Notes in Computer Science (ARGMAS’10), vol. 6057, pp. 42–59. Springer, Berlin, Germany (2010)

    Google Scholar 

  • Medellin-Gasque, R., Atkinson, K., Bech-Capon, T., McBurney, P.: Strategies for question selection in argumentative dialogues about plans. Argument Comput. 4(2), 151–179 (2013)

    Google Scholar 

  • Meservy, R.: Auditing Internal Controls: A Computational Model of the Review Process (Expert Systems, Cognitive, Knowledge Acquisition, Validation, Simulation), Ohio State University (1986)

    Google Scholar 

  • Moraitis, P., Spanoudakis, N.: Argumentation-based agent interaction in an ambient-intelligence context. IEEE Intell. Syst. 22(6), 84–93 (2007)

    Article  Google Scholar 

  • Morge, M., Mancarella, P.: The hedgehog and the fox. An argumentation-based decision support system. In: Proceedings of the Argumentation in Multi-Agent Systems, Fourth International Workshop, Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’07), vol. 4946, pp. 114–131. Springer, Berlin, Germany (2007)

    Google Scholar 

  • Morge, M., Mancarella, P.: Assumption-based argumentation for the minimal concession strategy. In: Proceedings of the Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ARGMAS’10), vol. 6057, pp. 114–133. Springer, Berlin, Germany (2010)

    Google Scholar 

  • Neri, F.: Agent-based modeling under partial and full knowledge learning settings to simulate financial markets. AI Commun. 25(4), 295–304 (2012)

    Google Scholar 

  • O’Callaghan, S.: An artificial intelligence application of backpropagation neural networks to simulate accountants’ assessments of internal control systems using COSO guidelines. Doctoral dissertation, University of Cincinnati (1994)

    Google Scholar 

  • Ontañon, S., Plaza, E.: Arguments and counterexamples in case-based joint deliberation. In: Proceedings of the 3rd International Workshop, Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’07), vol. 4766, pp. 36–53. Springer, Berlin, Germany (2007)

    Google Scholar 

  • Parsons, S., Sklar, E.: How agents alter their beliefs after an argumentation-based dialogue. In: Proceedings of the Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’06), vol. 4049, pp. 297–312. Springer, Berlin, Germany (2006)

    Google Scholar 

  • Parunak, H.V.D., Odell, J.: Representing social structures in UML. Agent-Oriented Softw. Eng. II 2222, 1–16 (2002)

    Article  Google Scholar 

  • Peat, M., Jones, M.: Using Neural Nets to Combine Information Sets in Corporate Bankruptcy Prediction. Intelligent Systems in Accounting, pp. 90–101. Wiley, New York (2012)

    Google Scholar 

  • Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer, New York (2009)

    Google Scholar 

  • Razavi, R., Perrot, J., Guelfi, N.: Adaptive modeling: an approach and a method for implementing adaptive agents. In: Massively Multi-Agent Systems I, Lecture Notes in Computer Science, vol. 1, pp. 136–148 (2005)

    Google Scholar 

  • Reed, C.: Dialogue frames in agent communication. In: Proceedings of the 3rd International Conference on Multiagent Systems (ICMAS’98), pp. 246–253 (1998)

    Google Scholar 

  • Rodriguez, S., De Paz, Y., Bajo, J., Corchado, J.M.: Socialbased planning model for multiagent systems. Expert Syst. Appl. 38(10), 13005–13023 (2011)

    Article  Google Scholar 

  • Samakovitis, G., Kapetanakis, S.: Computer-aided financial fraud detection: promise and applicability in monitoring financial transaction fraud. In: Proceedings of International Conference on Business Management & IS, vol. 2, no. 1 (2013)

    Google Scholar 

  • Sarkar, S., Sriram, R.S., Joykutty, S.: Belief networks for expert system development in auditing. Int. J. Intell. Syst. Account. Fin. Manage. 5(3), 147–163 (1998)

    Article  Google Scholar 

  • Sarlin, P., Marghescu, D.: Visual Predictions of Currency Crises using Self-Organizing Maps. Intelligent Systems in Accounting, pp 15–38. Wiley, New York (2011)

    Google Scholar 

  • Srivastava, R.P., Dutta, S.K., Johns, R.W.: An expert system approach to audit planning and evaluation in the belief function framework. Int. J. Intell. Syst. Account. Fin. Manage. 5, 165–184 (1998)

    Article  Google Scholar 

  • Tang, Y., Parsons, S.: Argumentation-based multi-agent dialogues for deliberation. In: Proceedings of the Argumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ArgMAS’06), vol. 4049, pp. 229–244. Springer, Berlin, Germany (2006)

    Google Scholar 

  • Thakur, J.: Role of artificial intelligence and expert system in: business competitiveness. Gian Jyoti E-J. 1(2) (2012)

    Google Scholar 

  • Thimm, M.: Realizing argumentation in multi-agent systems using defeasible logic programming. In: Proceedings of theArgumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ARGMAS’09), vol. 6057, pp. 175–194. Springer, Berlin, Germany (2009)

    Google Scholar 

  • Vaez, S., Baghi, M., Shiralizadeh, M., Farzadi, S.: Prediction the relation between audit fee and financial variables by using of artificial neural networks. Int. Res. J. Fin. Econ. 107, 17 (2013)

    Google Scholar 

  • Walton, D.N., Krabbe, C.W.: Commitment inDialogue: Basic Concepts of Interpersonal Reasoning. Suny Press, Albany (1995)

    Google Scholar 

  • Wardeh, M., Bech-Capon, T., Coenen, F.: Multi-party argument from experience. In: Proceedings of theArgumentation in Multi-Agent Systems, Lecture Notes in Computer Science (ARGMAS’10), vol. 6057, pp. 216–235. Springer, Berlin, Germany (2010)

    Google Scholar 

  • Welch, O.J., Reeves, T.E., Welch, S.T.: Using a genetic algorithm-based classifier system for modeling auditor decision behaviour in a fraud setting. Int. J. Intell. Syst. Account. Fin. Manage. 7(3), 173–186 (1998)

    Article  Google Scholar 

  • Weyns, D., Schelfthout, K., Holvoet, T., Glorieux, O.: Towards adaptive role selection for behavior-based agents. Lecture Notes in Computer Science, vol. 3394, pp. 295–312 (2005)

    Google Scholar 

  • Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

    Article  Google Scholar 

  • Zeng, Z., Zhang, H., Zhang, R., Xing, Y.: Combination algorithm of probabilistic argumentation systems based on evidence theory. J. Mod. Internet Things 2(1), 13–18 (2013)

    Google Scholar 

Download references

Conflict of Interest Disclosure

The content of this chapter reflects only the opinion of the authors with independence of their affiliations. The authors do not have a direct financial relation with the commercial entities mentioned in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Angel Fernandez Canelas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernandez Canelas, J.A., Martin Martin, Q., Corchado Rodriguez, J.M. (2015). Argumentative SOX Compliant and Intelligent Decision Support Systems for the Suppliers Contracting Process. In: Kahraman, C., Çevik Onar, S. (eds) Intelligent Techniques in Engineering Management. Intelligent Systems Reference Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-17906-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17906-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17905-6

  • Online ISBN: 978-3-319-17906-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics