Abstract
It is well-known that one of the major application areas of cyber physical system (CPS) concept is in energy control and optimization, i.e., cyber physical power system (CPPS). Within this context, the electricity production management is becoming far more complex than those traditional power systems. Under this circumstance, we pay our attention to economic load dispatch problem (ELDP) in this chapter. The ultimate goal of ELDP is to schedule the output of the committed generating units in a reliable and efficient manner. Artificial bee colony (ABC) algorithm, inspired by the foraging behaviour of honeybee swarms, is employed as an effective approach to optimize the system structure within non-smooth cost functions due to its simple and flexible than most optimization algorithms in terms of algorithm structure. A test example is used to illustrate the flexibility and effectiveness of the proposed algorithm. The results show that the ABC is promising in terms of accuracy and efficiency.
Keywords
- Cyber physical system (CPS)
- Economic load dispatch problem (ELDP)
- Computational intelligence (CI)
- Artificial bee colony (ABC)
- Cyber physical power system (CPPS)
This is a preview of subscription content, access via your institution.
Buying options
References
Abbass, H.A.: Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach. In: Proceedings of the Congress on Evolutionary Computation (CEC), Seoul, Korea, pp. 207–214 (2001)
Abdechiri, M., Meybodi, M.R., Bahrami, H.: Gases Brownian motion optimization: an algorithm for optimization (GBMO). Appl. Soft Comput. 13, 2932–2946 (2013)
Abdelaziz, A.Y., Mekhamer, S.F., Badr, M.A.L., Kamh, M.Z.: Economic dispatch using an enhanced hopfield neural network. Electr. Power Compon. Syst. 36, 719–732 (2008)
Abuhamdah, A., Ayob, M.: Hybridization multi-neighbourhood particle collision algorithm and great deluge for solving course timetabling problems. In: 2nd Conference on Data Mining and Optimization, Selangor, Malaysia, pp. 108–114, 27–28 Oct 2009
Abuhamdah, A., Ayob, M.: Multi-neighbourhood particle collision algorithm for solving course timetabling problems. In: 2nd Conference on Data Mining and Optimization, Selangor, Malaysia, pp. 21–27, 27–28 Oct 2009
Acharya, D.P., Panda, G., Lakshmi, Y.V.S.: Effects of finite register length on fast ICA, bacterial foraging optimization based ICA and constrained genetic algorithm based ICA algorithm. Digit. Signal Proc. 20, 964–975 (2010)
Adioui, M., Arino, O., Smith, W.V., Treuil, J.P.: A mathematical analysis of a fish school model. J. Differ. Equ. 188, 406–446 (2003)
Alatas, B.: ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38, 13170–13180 (2011)
Ali, M.M., Golalikhani, M.: An electromagnetism-like method for nonlinearly constrained global optimization. Comput. Math Appl. 60, 2279–2285 (2010)
Anandaraman, C., Sankar, A.V.M., Natarajan, R.: A new evolutionary algorithm based on bacterial evolution and its applications for scheduling a flexible manufacturing system. Jurnal Teknik Industri 14, 1–12 (2012)
Anonymous: DHL Solutions Offers Service That is Second to None. Caribbean Business, London, p. B10 (2008)
Anonymous: South Africa’s Electricity Crisis: Unplugged. The Economist, London, p. 34 (2015)
Apalak, M.K., Karaboga, D., Akay, B.: The artificial bee colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates. Eng. Optimiz. 46, 420–437 (2013)
Attaviriyanupap, P., Kita, H., Tanaka, E., Hasegawa, J.: A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties. IEEE Trans. Power Syst. 19, 1299–1307 (2004)
Bacanin, N.: Implementation and performance of an object-oriented software system for cuckoo search algorithm. Int. J. Math. Comput. Simul. 6, 185–193 (2012)
Bacanin, N.: An object-oriented software implementation of a novel cuckoo search algorithm. In: European Computing Conference (ECC’ 11), Paris, France, pp. 245–250, 28–30 Apr 2011
Bahrololoum, A., Nezamabadi-pour, H., Bahrololoum, H., Saeed, M.: A prototype classifier based on gravitational search algorithm. Appl. Soft Comput. 12, 819–825 (2012)
Ban, X., Yang, Y., Ning, S., Lv, X., Qin, J.: A self-adaptive control algorithm of the artificial fish formation. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Korea, pp. 1903–1908, 20–24 Aug 2009
Banerjee, S., Caballé, S.: Exploring fish school algorithm for improving turnaround time: an experience of content retrieval. In: Third International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 842–847 (2011)
Banharnsakun, A., Sirinaovakul, B., Achalakul, T.: Job Shop Scheduling with the best-so-far ABC. Eng. Appl. Artif. Intell. 25, 583–593 (2012)
Bastos-Filho, C.J.A., de Lima-Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: A novel search algorithm based on fish school behavior. In: IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2646–2651 (2008)
Behrang, M.A., Assareh, E., Ghalambaz, M., Assari, M.R., Noghrehabadi, A.R.: Forecasting future oil demand in Iran using GSA (gravitational search algorithm). Energy 36, 5649–5654 (2011)
Bhattacharya, A., Chattopadhyay, P.K.: Biogeography-based optimization for different economic load dispatch problems. IEEE Trans. Power Syst. 25, 1064–1077 (2010a)
Bhattacharya, A., Chattopadhyay, P.K.: Solving complex economic load dispatch problems using biogeography-based optimization. Expert Syst. Appl. 37, 3605–3615 (2010b)
Bhattacharya, A., Chattopadhyay, P.K.: Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans. Power Syst. 25, 1955–1964 (2010c)
Bhattacharya, A., Chattopadhyay, P.K.: Hybrid differential evolution with biogeography-based optimization algorithm for solution of economic emission load dispatch problems. Expert Syst. Appl. 38, 14001–14010 (2011)
Birbil, Şİ., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)
Burnwal, S., Deb, S.: Scheduling optimization of flexible manufacturing system using cuckoo search-based approach. Int. J. Adv. Manuf. Technol. 64, 951–959 (2013)
Camp, C.V.: Design of space trusses using Big Bang–Big Crunch optimization. J. Struct. Eng. 133, 999–1008 (2007)
Cao, J., Gao, H.: A quantum-inspired bacterial swarming optimization algorithm for discrete optimization problems. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I, LNCS 7331, pp. 29–36. Springer, Heidelberg (2012)
Chang, P.-C., Chen, S.-H., Fan, C.-Y.: A hybrid electromagnetism-like algorithm for single machine scheduling problem. Expert Syst. Appl. 36, 1259–1267 (2009)
Chatterjee, A., Mahanti, G.K., Pathak, N.: Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. Prog. Electromagn. Res. B 25, 331–348 (2010)
Chen, P.H., Chang, H.C.: Large-scale economic dispatch by genetic algorithm. IEEE Trans. Power Syst. 10, 1919–1926 (1995)
Chen, T., Wang, Y., Pang, L., Liu, Z., Zhang, L.: An improved artificial searching swarm algorithm and its performance analysis. In: Second International Conference on Computer Modeling and Simulation (ICCMS), pp. 260–263 (2010)
Coelho, L.D.S., Mariani, V.C.: An improved harmony search algorithm for power economic load dispatch. Energy Convers. Manage. 50, 2522–2526 (2009)
Cuevas, E., Sencion-Echauri, F., Zaldivar, D., Perez-Cisneros, M.: Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft. Comput. 16, 281–296 (2012)
Damodaram, R., Valarmathi, M.L.: Phishing website detection and optimization using modified bat algorithm. Int. J. Eng. Res. Appl. 2, 870–876 (2012)
Elgerd, O.I.: Electric Energy System Theory: An Introduction, 2nd edn. McGraw Hill Book Company, New York (1982)
El-Keib, A.A., Ma, H., Hart, J.L.: Environmentally constrained economic dispatch using the Lagrangian relaxation method. IEEE Trans. Power Syst. 9, 1723–1729 (1994)
Erol, O.K., Eksin, I.: A new optimization method: Big Bang-Big Crunch. Adv. Eng. Softw. 37, 106–111 (2006)
Fan, J.Y., Zhang, L.: Real-time economic dispatch with line flow and emission constraints using quadratic programming. IEEE Trans. Power Syst. 13, 320–325 (1998)
Formato, R.A.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. Pier 77, 425–491 (2007)
Formato, R.A.: Central force optimization: a new deterministic gradient-like optimization metaheuristic. OPSEARCH 46, 25–51 (2009)
Formato, R.A.: Central force optimization with variable initial probes and adaptive decision space. Appl. Math. Comput. 217, 8866–8872 (2011)
Gaing, Z.L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18, 1187–1195 (2003)
Genç, H.M., Eksin, İ., Erol, O.K.: Big Bang–Big Crunch optimization algorithm hybridized with local directional moves and application to target motion analysis problem. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Istanbul, Turkey, pp. 881–887, 10–13 Oct 2010
Gorbenko, A., Popov, V.: The force law design of artificial physics optimization for robot anticipation of motion. Adv. Stud. Theor. Phys. 6, 625–628 (2012)
Green, R.C., Wang, L., Alam, M., Formato, R.A.: Central force optimization on a GPU: a case study in high performance metaheuristics using multiple topologies. In: IEEE Congress on Evolutionary Computation (CEC), pp. 550–557 (2011)
Green, R.C., Wang, L., Alam, M.: Training neural networks using central force optimization and particle swarm optimization: insights and comparisons. Expert Syst. Appl. 39, 555–563 (2012)
Haghighi, A., Ramos, H.M.: Detection of leakage freshwater and friction factor calibration in drinking networks using central force optimization. Water Resour. Manage. 26, 2347–2363 (2012)
Happ, H.H.: Optimal power dispatch—a comprehensive survey. IEEE T. Power Ap. Syst. PAS-96, 841–850 (1977)
Hsu, C.-M.: An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming. Int. J. Syst. Sci. 45(12), 2645–2664 (2014). doi:http://dx.doi.org/10.1080/00207721.2013.775388
Ilić, M.D., Xie, L., Khan, U.A., Moura, J.M.F.: Modeling of future cyber-physical energy systems for distributed sensing and control. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 40, 825–838 (2010)
Ituarte-Villarreal, C.M., Espiritu, J.F.: Wind turbine placement in a wind farm using a viral based optimization algorithm. In: 41st International Conference on Computers and Industrial Engineering, Los Angeles, CA, USA, pp. 672–677, 23–26 Oct 2011
Jabr, R.A., Coonick, A.H., Cory, B.J.: Homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans. Power Syst. 15, 930–936 (2000)
Jain, A.K., Srivastava, S.C., Singh, S.N., Srivastava, L.: Strategic bidding in transmission constrained electricity markets using artificial bee colony algorithm. Electr. Pow. Compo. Syst. 40, 1768–1788 (2012)
Kang, F., Li, J., Xu, Q.: Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput. Struct. 87, 861–870 (2009)
Kang, F., Li, J., Ma, Z.: An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Eng. Optim. 45, 207–223 (2013)
Karaboga, N.: A new design method based on artificial bee colony algorithm for digital IIR filters. J. Franklin Inst. 346, 328–348 (2009)
Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31, 61–85 (2009a)
Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009b)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)
Karaboğa, N., Çetinkaya, M.B.: A novel and efficient algorithm for adaptive filtering: artificial bee colony algorithm. Turk. J. Electr. Eng. Comput. Sci. 19, 175–190 (2011)
Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06, Computer Engineering Department, Engineering Faculty, Erciyes University (2005)
Karaboga, D., Ozturk, C.: Neural networks training by artificial bee colony algorithm on pattern classification. Neural Netw. World 19, 279–292 (2009)
Karaboga, D., Ozturk, C.: A novel clustering approach: artificial bee colony (ABC) algorithm. Appl. Soft Comput. 11, 652–657 (2011)
Kaveh, A., Behnam, A.F.: Cost optimization of a composite floor system, one-way waffle slab, and concrete slab formwork using a charged system search algorithm. Sci. Iran. A 19, 410–416 (2012)
Kaveh, A., Talatahari, S.: Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput. Struct. 87, 1129–1140 (2009)
Kaveh, A., Talatahari, S.: A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures. Asian J. Civ. Eng. (Build. Hous.) 11, 103–122 (2010a)
Kaveh, A., Talatahari, S.: Optimal design of Schwedler and ribbed domes via hybrid Big Bang-Big Crunch algorithm. J. Constr. Steel Res. 66, 412–419 (2010b)
Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–289 (2010c)
Kaveh, A., Talatahari, S.: Optimal design of skeletal structures via the charged system search algorithm. Struct. Multidiscip. Optim. 41, 893–911 (2010d)
Kim, K.-D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100, 1287–1308 (2012)
Lam, A.Y.S., Li, V.O.K., Wei, Z.: Chemical reaction optimization for the fuzzy rule learning problem. In: IEEE World Congress on Computational lnteliigence (WCCI), Brisbane, Australia, pp. 1–8, 10–15 June 2012
Lam, A.Y.S., Li, V.O.K.: Chemical reaction optimization for cognitive radio spectrum allocation. In: IEEE Global Communication Conference (IEEE GLOBECOM 2010), Miami, FL, USA, pp. 1–5 (2010)
Lam, A.Y.S., Li, V.O.K.: Chemical reaction optimization: a tutorial. Memetic Comput. 4, 3–17 (2012)
Lemma, T.A., Hashim, F.B.M.: Use of fuzzy systems and bat algorithm for exergy modeling in a gas turbine generator. In: IEEE Colloquium on Humanities, Science and Engineering Research (CHUSER), Penang, pp. 305-310, 5–6 Dec 2011
Li, J.Q., Pan, Q.K., Gao, K.Z.: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int. J. Adv. Manuf. Technol. 55, 1159–1169 (2011)
Lin, W.M., Cheng, F.S., Tsay, M.T.: An improved tabu search for economic dispatch with multiple minima. IEEE Trans. Power Syst. 17, 108–112 (2002)
Liu, D., Cai, Y.: Taguchi method for solving the economic dispatch problem with nonsmooth cost functions. IEEE Trans. Power Syst. 20, 2006–2014 (2005)
Lučić, P., Teodorović, D.: Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the TRISTAN IV triennial symposium on transportation analysis, Sao Miguel, Azores Islands, pp. 441–445 (2001)
Lučić, P., Teodorović, D.: Transportation modeling: an artificial life approach. In 14th IEEE International Conference on Tools with Artificial Intelligence, Washington, D.C., pp. 216–223 (2002)
da Luz, E.F.P., Becceneri, J.C., de Campos Velho, H.F..: A new multi-particle collision algorithm for optimization in a high performance environment. J. Comp. Int. Sci. 1, 3–10 (2008)
da Luz, E.F.P., Becceneri, J.C., de Campos Velho, H.F.: Multiple particle collision algorithm applied to radiative transference and pollutant localization inverse problems. In: IEEE International Symposium on Parallel and Distributed Processing Workshops and Ph.D. Forum (IPDPSW), pp. 347–351 (2011)
Mahmood, A., Javaid, N., Razzaq, S.: A review of wireless communications for smart grid, Renew. Sustain. Energy Rev. 41, 248–260 (2015)
Mahor, A., Prasad, V., Rangnekar, S.: Economic dispatch using particle swarm optimization: a review. Renew. Sustain. Energy Rev. 13, 2134–2141 (2009)
Musikapun, P., Pongcharoen, P.: Solving multi-stage multi-machine multi-product scheduling problem using bat algorithm. In: 2nd International Conference on Management and Artificial Intelligence, vol. 35, pp. 98–102 (2012)
Nakrani, S., Tovey, C.: On honey bees and dynamic allocation in an Internet server colony. In: 2nd International Workshop on the Mathematics and Algorithms of Social Insects, Altanta, Georgia, USA, pp. 1–8 (2003)
Nejad, H.C., Jahani, R.: A new approach to economic load dispatch of power system using imperialist competitive algorithm. Aust. J. Basic Appl. Sci. 5, 835–843 (2011)
Nomana, N., Iba, H.: Differential evolution for economic load dispatch problems. Electr. Power Syst. Res. 78, 1322–1331 (2008)
Omkar, S.N., Senthilnath, J., Khandelwal, R., Naik, G.N., Gopalakrishnan, S.: Artificial bee colony (ABC) for multi-objective design optimization of composite structures. Appl. Soft Comput. 11, 489–499 (2011)
Ongsakul, W., Dechanupaprittha, S., Ngamroo, I.: Parallel tabu search algorithm for constrained economic dispatch. IEE Proc. Gener. Transm. Distrib. 151, 157–166 (2004)
Ozturk, C., Karaboga, D., Gorkemli, B.: Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm. Sensor 11, 6056–6065 (2011)
Pan, Q.K., Tasgetiren, M.F., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181, 2455–2468 (2010)
Pandi, V.R., Panigrahi, B.K.: Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm. Expert Syst. Appl. 38, 8509–8514 (2011)
Panigrahi, C.K., Chattopadhyay, P.K., Chakrabarti, R.N., Basu, M.: Simulated annealing technique for dynamic economic dispatch. Electr. Pow. Compo. Sys. 34(5), 577–586 (2006)
Panigrahi, B.K., Yadav, S.R., Agrawal, S., Tiwari, M.K.: A clonal algorithm to solve economic load dispatch. Electr. Power Syst. Res. 77, 1381–1389 (2007)
Park, J.B., Lee, K.S., Shin, J.R., Lee, K.Y.: A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans. Power Syst. 20, 34–42 (2005)
Park, K.-J., Zheng, R., Liu, X.: Cyber-physical systems: milestones and research challenges. Comput. Commun. 36, 1–7 (2012)
Pereira-Neto, A., Unsihuay, C., Saavedra, O.R.: Efficient evolutionary strategy optimisation procedure to solve the nonconvex economic dispatch problem with generator constraints. IEE Proc. Gener. Transm. Distrib. 152, 563–660 (2005)
Pham, D.T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm—a novel tool for complex optimisation problems. In: Second International Virtual Conference on Intelligent production machines and systems (IPROMS), pp. 454–459 (2006)
Pham, D.T., Ghanbarzadeh, A.: Multi-objective optimisation using the bees algorithm. In: Third International Virtual Conference on Intelligent Production Machines and Systems (IPROMS), Whittles, Dunbeath, Scotland, pp. 1–5 (2007)
Pradhan, P.M., Panda, G.: Solving multiobjective problems using cat swarm optimization. Expert Syst. Appl. 39, 2956–2964 (2012)
Qin, L., Jiang, Q., Zou, Z., Cao, Y.: A queen-bee evolution based on genetic algorithm for economic power dispatch. In: Proceedings of the 39th International Universities Power Engineering Conference (UPEC), vol. 1, pp. 453–456 (2004)
Qubati, G.M., Dib, N.I.: Microstrip patch antenna optimization using modified central force optimization. Prog. Electromagn. Res. B 21, 281–298 (2010)
Rabanal, P., Rodríguez, I., Rubio, F.: Using river formation dynamics to design heuristic algorithms. In: Akl, C.S.C.S.G., Dinneen, M.J., Rozenber, G., Wareham, H.T. (eds.) UC 2007, LNCS, vol. 4618, pp. 163–177. Springer, Heidelberg (2007)
Rabanal, P., Rodríguez, I., Rubio, F.: Solving dynamic TSP by using river formation dynamics. In: Fourth International Conference on Natural Computation (ICNC), pp. 246–250 (2008a)
Rabanal, P., Rodríguez, I., Rubio, F.: Finding minimum spanning/distances trees by using river formation dynamics. In: Dorigo, M. (ed.) ANTS 2008, LNCS 5217, pp. 60–71. Springer, Heidelberg (2008b)
Rabanal, P., Rodríguez, I., Rubio, F.: Applying river formation dynamics to the Steiner tree problem. In: 9th IEEE International Conference on Cognitive Informatics (ICCI), pp. 704–711 (2010)
Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Proceedings of the Design Automation Conference 2010, Anaheim, California, USA, pp. 1–6 (2010)
Rao, R.V., Patel, V.K.: Optimization of mechanical draft counter flow wet-cooling tower using artificial bee colony algorithm. Energy Convers. Manage. 52, 2611–2622 (2011)
Rayapudi, S.R.: An intelligent water drop algorithm for solving economic load dispatch problem. Int. J. Electr. Electron. Eng. 5, 43–49 (2011)
Roy, P., Chakrabarti, A.: Modified shuffled frog leaping algorithm for solving economic load dispatch problem. Energy Power Eng. 3, 551–556 (2011)
Saadat, H.: Power System Analysis. McGraw Hill WCB, New York (1999)
Sabat, S.L., Udgata, S.K., Abraham, A.: Artificial bee colony algorithm for small signal model parameter extraction of MESFET. Eng. Appl. Artif. Intell. 23, 689–694 (2010)
Saber, A.Y.: Economic dispatch using particle swarm optimization with bacterial foraging effect. Electr. Power Energy Syst. 34, 38–46 (2012)
Sacco, W.F., de Oliveira, C.R.E.: A new stochastic optimization algorithm based on a particle collision metaheuristic. In: 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, pp. 1–6, 30 May–03 June 2005
Samanta, S., Chakraborty, S.: Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng. Appl. Artif. Intell. 24, 946–957 (2011)
Sinha, N., Chakrabarti, R., Chattopadhyay, P.K.: Evolutionary programming techniques for economic load dispatch. IEEE Trans. Evol. Comput. 7, 83–94 (2003)
Song, Y.H., Chou, C.S.V.: Large-scale economic dispatch by artificial ant colony search algorithms. Electr. Mach. Power Syst. 27, 679–690 (1999)
Sonmez, M.: Artificial bee colony algorithm for optimization of truss structures. Appl. Soft Comput. 11, 2406–2418 (2011)
Szeto, W.Y., Wu, Y., Ho, S.C.: An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur. J. Oper. Res. 215, 126–135 (2011)
Tabakov, P.Y.: Big Bang-Big Crunch optimization method in optimum design of complex composite laminates. World Acad. Sci. Eng. Technol. 77, 835–839 (2011)
Taherdangkoo, M., Shirzadi, M.H., Bagheri, M.H.: A novel meta-heuristic algorithm for numerical function optimization_blind, naked mole-rats (BNMR) algorithm. Sci. Res. Essays 7, 3566–3583 (2012)
Tang, H., Zhou, J., Xue, S., Xie, L.: Big Bang-Big Crunch optimization for parameter estimation in structural systems. Mech. Syst. Signal Process. 24, 2888–2897 (2010)
Tasgetiren, M.F.: A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops. Inf. Sci. 181, 3459–3475 (2011)
Teodorović, D.: Bee colony optimization (BCO). In: Lim, C.P., Jain, L.C., Dehuri, S. (eds.) Innovations in Swarm Intelligence, pp. 39–60. Springer, Heidelberg (2009)
Tereshko, V., Lee, T.: How information mapping patterns determine foraging behaviour of a honeybee colony. Open. Syst. Inf. Dyn. 9, 181–193 (2002)
Thurston, L.D.: Jacksonville to Construct First Refrigerated Crossdock, p. 41. Caribbean Business, London (2008)
Tsai, P.-W., Pan, J.-S., Chen, S.-M., Liao, B.-Y, Hao, S.-P.: Parallel cat swarm optimization. In: Seventh International Conference on Machine Learning and Cybernetics, Kunming, China, pp. 3328–3333, 12–15 July 2008
Tsai, P.-W., Pan, J.-S., Chen, S.-M., Liao, B.-Y.: Enhanced parallel cat swarm optimization based on the Taguchi method. Expert Syst. Appl. 39, 6309–6319 (2012)
Vaisakh, K., Praveena, P., Rao, S.R.M., Meah, K.: Solving dynamic economic dispatch problem with security constraints using bacterial foraging PSO-DE algorithm. Electr. Power Energy Syst. 39, 56–67 (2012)
Walters, D.C., Sheble, G.B.: Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Syst. 8, 1325–1332 (1993)
Wang, P., Cheng, Y.: Relief supplies scheduling based on bean optimization algorithm. Econ. Res. Guide 8, 252–253 (2010)
Wang, L., Zhou, G., Xu, Y., Liu, M.: A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. Int. J. Prod. Res. 51(12), 3593–3608 (2013). doi:10.1080/00207543.2012.754549
Wang, L., Zhou, G., Xu, Y., Wang, S.Y., Liu, M.: An effective artificial bee colony algorithm for the flexible job-shop scheduling problem. Int. J. Adv. Manuf. Technol. 60, 303–315 (2012)
Wang, L., Zheng, X.-L., Wang, S.-Y.: A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem. Knowl.-Based Syst. 48, 17–23 (2013)
Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In Proceedings of the 4th Ant Colony Optimization and Swarm Intelligence (ANTS), Lecture Notes in Computer Science, Brussels, Belgium, vol. 3172, pp. 83–94, 5–8 Sept 2004
Wong, K.P., Fung, C.C.: Simulated annealing based economic dispatch algorithm. IEE Proc. C: Gener. Transm. Distrib. 140, 509–515 (1993)
Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control. Wiley, New York (1996)
Xie, L., Zeng, J., Formato, R.A.: Convergence analysis and performance of the extended artificial physics optimization algorithm. Appl. Math. Comput. 218, 4000–4011 (2011)
Xing, B., Gao, W.-J.: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Springer, Heidelberg (2014). ISBN 978-3-319-03403-4
Xing, B., Gao, W.-J., Marwala, T.: Intelligent data processing using emerging computational intelligence techniques. Res. Notes Inform. Sci. 12, 10–15 (2013a)
Xing, B., Gao, W.-J., Marwala, T.: Taking a new look at traveling salesman problem through the lens of innovative computational intelligence. Res. Notes Inform. Sci. 12, 20–25 (2013b)
Xing, B., Gao, W.-J., Marwala, T.: When vehicle routing problem becomes dynamic: can innovative computational intelligence give us a hand? Res. Notes Inform. Sci. 12, 26–31 (2013c)
Yang, X.S.: Engineering optimizations via nature-inspired virtual bee algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005, lNCS 3562, vol. 3562/2005, pp. 317–323. Springer, Heidelberg (2005)
Xu, J., Lam, A.Y.S., Li, V.O.K.: Chemical reaction optimization for the grid scheduling problem. In: IEEE International Conference on Communications (ICC), pp. 1–5, May 2010
Yalcinoz, T., Short, M.J.: Neural networks approach for solving economic dispatch problem with transmission capacity constraints. IEEE Trans. Power Syst. 13, 307–313 (1998)
Yang, X.-S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29, 464–483 (2012)
Yang, H.T., Yang, P.C., Huang, C.L.: Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst. 11, 112–118 (1996)
Yang, S.-D., Yi, Y.-L., Shan, Z.-Y.: Gbest-guided artificial chemical reaction algorithm for global numerical optimization. Procedia Eng. 24, 197–201 (2011)
Yang, X.-S., Karamanoglu, M., He, X.: Multi-objective flower algorithm for optimization. Procedia Comput. Sci. 18, 861–868 (2013)
Yesil, E., Urbas, L.: Big Bang-Big Crunch learning method for fuzzy cognitive maps. World Acad. Sci. Eng. Technol. 71, 815–824 (2010)
Yonezawa, Y., Kikuchi, T.: Ecological algorithm for optimal ordering used by collective honey bee behavior. In: 7th International Symposium on Micro Machine and Human Science, pp. 249–256 (1996)
Yuan, X., Wang, L., Yuan, Y., Zhang, Y., Cao, B., Yang, B.: A modified differential evolution approach for dynamic economic dispatch with valve-point effects. Energy Convers. Manage. 49, 3447–3453 (2008)
Zhang, X., Jiang, K., Wang, H., Li, W., Sun, B.: An improved bean optimization algorithm for solving TSP. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I, LNCS 7331, pp. 261–267. Heidelberg, Springer (2012)
Zhang, X., Sun, B., Mei, T., Wang, R.: Post-disaster restoration based on fuzzy preference relation and bean optimization algorithm. In: IEEE Youth Conference on Information Computing and Telecommunications (YC-ICT), pp. 271–274, 28–30 Nov 2010
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Xing, B. (2015). Optimization in Production Management: Economic Load Dispatch of Cyber Physical Power System Using Artificial Bee Colony. In: Kahraman, C., Çevik Onar, S. (eds) Intelligent Techniques in Engineering Management. Intelligent Systems Reference Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-17906-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-17906-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17905-6
Online ISBN: 978-3-319-17906-3
eBook Packages: EngineeringEngineering (R0)