Skip to main content

The Role of mTOR Inhibitors and PI3K Pathway Blockade in Renal Cell Cancer

  • Chapter
Kidney Cancer
  • 1053 Accesses

Abstract

mTORC1 acts as a sensor and signaling intermediary for nutrient availability, energy levels, and mitogenic growth factors which is regulated by hypoxic conditions and by loss of PTEN or activation of PI3K signaling. Targeting mTOR with temsirolimus increased survival for patients with poor-risk metastatic renal cell cancer, compared to treatment with interferon. The oral mTOR inhibitor everolimus has been associated with improved progression-free survival compared to placebo in patients with metastatic renal cell cancer which has progressed after treatment with a VEGF inhibitor. Combinations with VEGF inhibitors have been limited due to toxicity, but have thus far failed to find an advantage over single-agent therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    CAS  PubMed  Google Scholar 

  2. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726

    CAS  Google Scholar 

  3. Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    CAS  PubMed  Google Scholar 

  4. Brown EJ, Albers MW, Shin TB et al (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    CAS  PubMed  Google Scholar 

  5. Sabers CJ, Martin MM, Brunn GJ et al (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822

    CAS  PubMed  Google Scholar 

  6. Helliwell SB, Wagner P, Kunz J et al (1994) TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5:105–118

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    CAS  PubMed  Google Scholar 

  8. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    CAS  PubMed  Google Scholar 

  9. Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    CAS  PubMed  Google Scholar 

  10. Loewith R, Jacinto E, Wullschleger S et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    CAS  PubMed  Google Scholar 

  11. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    CAS  PubMed  Google Scholar 

  12. Dudek H, Datta SR, Franke TF et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    CAS  PubMed  Google Scholar 

  13. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    CAS  PubMed  Google Scholar 

  14. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    CAS  PubMed  Google Scholar 

  15. Brugarolas J, Lei K, Hurley RL et al (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 102:8204–8209

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Arsham AM, Howell JJ, Simon MC (2003) A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem 278:29655–29660

    CAS  PubMed  Google Scholar 

  18. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    PubMed  Google Scholar 

  19. Soni A, Akcakanat A, Singh G et al (2008) eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther 7:1782–1788

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480

    CAS  PubMed  Google Scholar 

  21. Rini BI, Atkins MB (2009) Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol 10:992–1000

    CAS  PubMed  Google Scholar 

  22. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4:658–665

    CAS  PubMed  Google Scholar 

  23. Tang JM, He QY, Guo RX, Chang XJ (2006) Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer 51:181–191

    PubMed  Google Scholar 

  24. Ellison LW (2005) Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle 4:1500–02

    Google Scholar 

  25. Byfield MP, Uurray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280:33076–82

    CAS  PubMed  Google Scholar 

  26. Nobukuni T, Joaguin M, Roccio M, Dann SG, Kim SY et al (2005) Amino acid mediate mTOR/Raptor signalling through activation of class 3 phosphatidylinositol 30H-kinase. Proc Natl Acad Sci U S A 102:14238–43

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Neshat MS, Mellinghoff IK, Tran C et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 98:10314–10319

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Avizienyte E, Loukola A, Roth S, Hemminiki A, Tarkkanen M, Salovaara R et al (1999) LKB1 somatic mutations in sporadic tumors. Am J Pathol 154:677–81

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kobayashi T, Minowa O, Sugitani Y, Takai S, Mitani H, Kobayashi E et al (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A 93:8762–67

    Google Scholar 

  30. Sarbassov DD, Ali SM, Sengupta S, Sheen J-H, Hsu PP, Bagley AF et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–68

    CAS  PubMed  Google Scholar 

  31. Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–85

    CAS  PubMed  Google Scholar 

  32. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al (2004) The TSC 1-2 tumor suppressor controls insulin-PI3K signalling via regulation of IRS proteins. J Cell Biol 166:213–23

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14:1650–1656

    CAS  PubMed  Google Scholar 

  34. Chiang GG, Abraham RT (2007) Targeting the mTOR signalling network in cancer. Trends Mol Med 13:433–42

    CAS  PubMed  Google Scholar 

  35. Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER (1998) Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer 22:200–209

    CAS  PubMed  Google Scholar 

  36. Latif F, Tory K, Gnarra J et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    CAS  PubMed  Google Scholar 

  37. Patel PH, Chadalavada RS, Chaganti RS, Motzer RJ (2006) Targeting von Hippel-Lindau pathway in renal cell carcinoma. Clin Cancer Res 12:7215–7220

    CAS  PubMed  Google Scholar 

  38. Brugarolas J (2007) Renal-cell carcinoma–molecular pathways and therapies. N Engl J Med 356:185–187

    CAS  PubMed  Google Scholar 

  39. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991–5004

    CAS  PubMed  Google Scholar 

  40. Maranchie JK, Vasselli JR, Riss J et al (2002) The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1:247–255

    CAS  PubMed  Google Scholar 

  41. Thomas GV, Tran C, Mellinghoff IK et al (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127

    CAS  PubMed  Google Scholar 

  42. Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86:670–674

    CAS  PubMed Central  PubMed  Google Scholar 

  43. de Paulsen N, Brychzy A, Fournier MC et al (2001) Role of transforming growth factor-alpha in von Hippel–Lindau (VHL)(-/-) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci U S A 98:1387–1392

    PubMed Central  PubMed  Google Scholar 

  44. Brenner W, Farber G, Herget T et al (2002) Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int J Cancer 99:53–57

    CAS  PubMed  Google Scholar 

  45. Abraham RT, Gibbons JJ (2007) The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res 13:3109–3114

    CAS  PubMed  Google Scholar 

  46. Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP (2007) Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol 177:346–352

    PubMed  Google Scholar 

  47. Pantuck AJ, Seligson DB, Klatte T et al (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109:2257–2267

    CAS  PubMed  Google Scholar 

  48. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28:727–732

    CAS  Google Scholar 

  49. Martel RR, Klicius J, Galet S (1977) Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 55:48–51

    CAS  PubMed  Google Scholar 

  50. Calne RY, Collier DS, Lim S et al (1989) Rapamycin for immunosuppression in organ allografting. Lancet 2:227

    CAS  PubMed  Google Scholar 

  51. Houchens DP, Ovejera AA, Riblet SM, Slagel DE (1983) Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol 19:799–805

    CAS  PubMed  Google Scholar 

  52. Eng CP, Sehgal SN, Vezina C (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 37:1231–1237

    CAS  Google Scholar 

  53. Albers MW, Williams RT, Brown EJ et al (1993) FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-Cdk association in early G1 of an osteosarcoma cell line. J Biol Chem 268:22825–22829

    CAS  PubMed  Google Scholar 

  54. Dilling MB, Dias P, Shapiro DN et al (1994) Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res 54:903–907

    CAS  PubMed  Google Scholar 

  55. Seufferlein T, Rozengurt E (1996) Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res 56:3895–3897

    CAS  PubMed  Google Scholar 

  56. Marx SO, Jayaraman T, Go LO, Marks AR (1995) Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res 76:412–417

    CAS  PubMed  Google Scholar 

  57. Grunwald V, DeGraffenried L, Russel D et al (2002) Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 62:6141–6145

    CAS  PubMed  Google Scholar 

  58. Yu K, Toral-Barza L, Discafani C et al (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:249–258

    PubMed  Google Scholar 

  59. Hidalgo M, Buckner JC, Erlichman C et al (2006) A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 12:5755–5763

    CAS  PubMed  Google Scholar 

  60. Raymond E, Alexandre J, Faivre S et al (2004) Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 22:2336–2347

    CAS  PubMed  Google Scholar 

  61. Punt CJ, Boni J, Bruntsch U, Peters M, Thielert C (2003) Phase I and pharmacokinetic study of CCI-779, a novel cytostatic cell-cycle inhibitor, in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors. Ann Oncol 14:931–937

    CAS  PubMed  Google Scholar 

  62. Boni JP, Hug B, Leister C, Sonnichsen D (2009) Intravenous temsirolimus in cancer patients: clinical pharmacology and dosing considerations. Semin Oncol 36(Suppl 3):S18–S25

    CAS  PubMed  Google Scholar 

  63. Skotnicki JS, Leone CL, Smith AL (2001) Design, synthesis and biological evaluation of C-42 hydroxyesters of rapamycin: the identification of CCI-779 [abstract 477]. Clin Cancer Res 7:3749S–3750S

    Google Scholar 

  64. Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304

    CAS  PubMed  Google Scholar 

  65. Peralba JM, DeGraffenried L, Friedrichs W et al (2003) Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin Cancer Res 9:2887–2892

    CAS  PubMed  Google Scholar 

  66. FDA. Temsirolimus package insert http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022088s008lbl.pdf

  67. Zimmerman JJ, Lasseter KC, Lim HK et al (2005) Pharmacokinetics of sirolimus (rapamycin) in subjects with mild to moderate hepatic impairment. J Clin Pharmacol 45:1368–1372

    CAS  PubMed  Google Scholar 

  68. Boni JP, Leister C, Bender G et al (2005) Population pharmacokinetics of CCI-779: correlations to safety and pharmacogenomic responses in patients with advanced renal cancer. Clin Pharmacol Ther 77:76–89

    CAS  PubMed  Google Scholar 

  69. Sattler M, Guengerich FP, Yun CH, Christians U, Sewing KF (1992) Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 20:753–761

    CAS  PubMed  Google Scholar 

  70. Jacobsen W, Serkova N, Hausen B et al (2001) Comparison of the in vitro metabolism of the macrolide immunosuppressants sirolimus and RAD. Transplant Proc 33:514–515

    CAS  PubMed  Google Scholar 

  71. Atkins MB, Hidalgo M, Stadler WM et al (2004) Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 22:909–918

    CAS  PubMed  Google Scholar 

  72. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 20:289–296

    CAS  PubMed  Google Scholar 

  73. Motzer RJ, Hudes GR, Curti BD et al (2007) Phase I/II trial of temsirolimus combined with interferon alfa for advanced renal cell carcinoma. J Clin Oncol 25:3958–3964

    CAS  PubMed  Google Scholar 

  74. Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    CAS  PubMed  Google Scholar 

  75. Motzer RJ, Mazumdar M, Bacik J et al (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17:2530–2540

    CAS  PubMed  Google Scholar 

  76. Mekhail TM, Abou-Jawde RM, Boumerhi G et al (2005) Validation and extension of the Memorial Sloan-Kettering prognostic factors model for survival in patients with previously untreated metastatic renal cell carcinoma. J Clin Oncol 23:832–841

    PubMed  Google Scholar 

  77. Logan T, McDermott D, Dutcher J et al (2008) Exploratory analysis of the influence of nephrectomy status on temsirolimus efficacy in patients with advanced renal cell carcinoma and poor-risk features. J Clin Oncol 26(Suppl):abstr 5050

    Google Scholar 

  78. Hutson TE, Escudier B, Esteban E, Bjarnason GA, Lim HY et al (2014) Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol 32:760–767

    CAS  PubMed  Google Scholar 

  79. Molina AM, Feldman DR, Voss MH, Ginsberg MS, Baum MS, Brocks DR et al (2012) Phase 1 trial of everolimus plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 118:1866–76

    Google Scholar 

  80. Patel PH, Senico PL, Curiel RE, Motzer RJ (2009) Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 7:24–27

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Semrad TJ, Eddings C, Dutia MP, Christensen S, Lau D, Lara Jr P (2011) Phase I study of temsirolimus (Tem) and pazopanib (Paz) in solid tumors with emphasis on renal cell carcinoma (RCC). J Clin Oncol 29(Suppl):abstr e15113

    Google Scholar 

  82. Patnaik A, Ricart A, Cooper J, Papadopoulos K (2007) A phase I, pharmacokinetic and pharmacodynamic study of sorafenib (S), a multi-targeted kinase inhibitor in combination with temsirolimus (T), an mTOR inhibitor in patients with advanced solid malignancies. J Clin Oncol 25(18S):abstr 3512

    Google Scholar 

  83. Fishman MN, Srinivas S, Hauke RJ, Amato RJ, Esteves B et al (2013) Phase Ib study of tivozanib (AV-951) in combination with temsirolimus in patients with renal cell carcinoma. Eur J Cancer 49:2841–2850

    CAS  PubMed  Google Scholar 

  84. Merchan JR, Liu G FT, Picus J et al (2007) Phase I/II trial of CCI-779 and bevacizumab in stage IV renal cell carcinoma: phase I safety and activity results. J Clin Oncol 2007 ASCO Annual Meeting Proceedings Part I 25:5034

    Google Scholar 

  85. Merchan JR, Pitot HC, Qin R et al (2009) Phase I/II trial of CCI 779 and bevacizumab in advanced renal cell carcinoma (RCC): safety and activity in RTKI refractory RCC patients. J Clin Oncol 27:abstr 5039

    Google Scholar 

  86. Negrier S, Gravis G, Perol D, Chevreau C, Delva R et al (2011) Temsirolimus and bevacizumab, or sunitinib, or interferon alpha and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomized phase II trial. Lancet Oncol 12:673–680

    CAS  PubMed  Google Scholar 

  87. Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG et al (2014) Randomized phase III trial of temsirolimus and bevacizumab versus interferon alpha and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol 32:752

    CAS  PubMed  Google Scholar 

  88. McDermott DF, Manola J, Pins M, Flaherty KT, Atkins MB et al (2013) The BeST trial (E2804): a randomized phase II study of VEGF, RAF kinase, and mTOR combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma. J Clin Oncol 31(Suppl):abstr 345

    Google Scholar 

  89. Kromdijk W, Huitema AD, Kemper ME, Schellens JH, Richel D, Klumpen H et al (2010) Phase I pharmacokinetic study of temsirolimus in combination with nelfinavir in patients with solid tumors. J Clin Oncol 28(Suppl):abstr 2572

    Google Scholar 

  90. Plimack ER, Wong Y, Von Mehren M, Malizzia L, Roethke SL et al (2009) A phase I study of temsirolimus and bryostatin in patients with metastatic renal cell carcinoma. J Clin Oncol 27(Suppl):abstr 5111

    Google Scholar 

  91. Neumayer HH, Paradis K, Korn A et al (1999) Entry-into-human study with the novel immunosuppressant SDZ RAD in stable renal transplant recipients. Br J Clin Pharmacol 48:694–703

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Eisen HJ, Tuzcu EM, Dorent R et al (2003) Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 349:847–858

    CAS  PubMed  Google Scholar 

  93. Pascual J (2006) Everolimus in clinical practice – renal transplantation. Nephrol Dial Transplant 21(Suppl 3):iii18–iii23

    CAS  PubMed  Google Scholar 

  94. Sanchez-Fructuoso AI (2008) Everolimus: an update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin Drug Metab Toxicol 4:807–819

    CAS  PubMed  Google Scholar 

  95. Boulay A, Zumstein-Mecker S, Stephan C et al (2004) Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res 64:252–261

    CAS  PubMed  Google Scholar 

  96. Tanaka C, O’Reilly T, Kovarik JM et al (2008) Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol 26:1596–1602

    CAS  PubMed  Google Scholar 

  97. Crowe A, Bruelisauer A, Duerr L, Guntz P, Lemaire M (1999) Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos 27:627–632

    CAS  PubMed  Google Scholar 

  98. Kovarik JM, Hartmann S, Figueiredo J et al (2002) Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 36:981–985

    CAS  PubMed  Google Scholar 

  99. O’Donnell A, Faivre S, Burris HA 3rd et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26:1588–1595

    PubMed  Google Scholar 

  100. Kovarik JM, Noe A, Berthier S et al (2003) Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol 43:141–147

    CAS  PubMed  Google Scholar 

  101. Lampen A, Zhang Y, Hackbarth I et al (1998) Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 285:1104–1112

    CAS  PubMed  Google Scholar 

  102. Kovarik JM, Sabia HD, Figueiredo J et al (2001) Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin Pharmacol Ther 70:425–430

    CAS  PubMed  Google Scholar 

  103. Strom T, Haschke M, Zhang YL et al (2007) Identification of everolimus metabolite patterns in trough blood samples of kidney transplant patients. Ther Drug Monit 29:592–599

    CAS  PubMed  Google Scholar 

  104. Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43:83–95

    CAS  PubMed  Google Scholar 

  105. Taylor PJ, Franklin ME, Graham KS, Pillans PI (2007) A HPLC-mass spectrometric method suitable for the therapeutic drug monitoring of everolimus. J Chromatogr B Analyt Technol Biomed Life Sci 848:208–214

    CAS  PubMed  Google Scholar 

  106. Tabernero J, Rojo F, Calvo E et al (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610

    CAS  PubMed  Google Scholar 

  107. Amato RJ, Jac J, Giessinger S, Saxena S, Willis JP (2009) A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer 115:2438–2446

    CAS  PubMed  Google Scholar 

  108. Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    CAS  PubMed  Google Scholar 

  109. Motzer RJ, Barrios CH, Kim TM, Falcon S, Cosgriff T et al (2013) Record-3: phase II randomized trial comparing sequential first-line everolimus (EVE) and second-line sunitinib (SUN) versus first-line SUN and second-line EVE in patients with metastatic renal cell carcinoma. J Clin Oncol 31(Suppl):abstr 4504

    Google Scholar 

  110. Ravaud A, Barrios CH, Alekseev BY et al (2013) Randomized phase II study of first-line everolimus plus bevacizumab versus interferon α-2a plus bevacizumab in patients with metastatic renal cell carcinoma: record 2 final overall survival and safety results. J Clin Oncol 31(Suppl):abstr 4576

    Google Scholar 

  111. Chawla SP, Sankhala K, Chua V, Menendez LR, Eilber FC, Eckardt JJ (2005) A phase II study of AP23573 (an mTOR inhibitor) in patients (pts) with advanced sarcomas. ASCO Meet Abstr 23:9068

    Google Scholar 

  112. Perotti A, Locatelli A, Sessa C et al (2010) Phase IB study of the mTOR inhibitor ridaforolimus with capecitabine. J Clin Oncol 28:4554–4561

    CAS  PubMed  Google Scholar 

  113. Sessa C, Tosi D, Vigano L et al (2010) Phase Ib study of weekly mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) with weekly paclitaxel. Ann Oncol 21:1315–1322

    CAS  PubMed  Google Scholar 

  114. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    CAS  PubMed  Google Scholar 

  115. Dumont FJ, Staruch MJ, Grammer T et al (1995) Dominant mutations confer resistance to the immunosuppressant, rapamycin, in variants of a T cell lymphoma. Cell Immunol 163:70–79

    CAS  PubMed  Google Scholar 

  116. Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A 92:4947–4951

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Fruman DA, Wood MA, Gjertson CK et al (1995) FK506 binding protein 12 mediates sensitivity to both FK506 and rapamycin in murine mast cells. Eur J Immunol 25:563–571

    CAS  PubMed  Google Scholar 

  118. Sugiyama H, Papst P, Gelfand EW, Terada N (1996) p70 S6 kinase sensitivity to rapamycin is eliminated by amino acid substitution of Thr229. J Immunol 157:656–660

    CAS  PubMed  Google Scholar 

  119. Mahalingam M, Templeton DJ (1996) Constitutive activation of S6 kinase by deletion of amino-terminal autoinhibitory and rapamycin sensitivity domains. Mol Cell Biol 16:405–413

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940

    CAS  PubMed  Google Scholar 

  121. O’Reilly KE, Rojo F, She QB et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    PubMed Central  PubMed  Google Scholar 

  122. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A (2005) Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4:1533–1540

    CAS  PubMed  Google Scholar 

  123. Iyer G, Hanrahan AJ, Milowsky MI et al (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338:221

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Parry L, Maynard JH, Patel A et al (2001) Analysis of the TSC1 and TSC2 genes in sporadic renal cell carcinomas. Br J Cancer 85:1226

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Dorff MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Dorff, T., Mack, P.C. (2015). The Role of mTOR Inhibitors and PI3K Pathway Blockade in Renal Cell Cancer. In: Lara, P., Jonasch, E. (eds) Kidney Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-17903-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17903-2_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17902-5

  • Online ISBN: 978-3-319-17903-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics