Skip to main content

Angiogenesis Inhibitor Therapy in Renal Cell Cancer

  • Chapter
  • 1043 Accesses

Abstract

The discovery of the role of angiogenesis pathways in the renal cell carcinoma has significantly changed the landscape in this disease. Medications targeting the vascular endothelial growth factor (VEGF), the center point of angiogenesis pathways, have given new treatment options to patients and clinicians beyond interferon therapy. This chapter will provide a review of the history and current understanding of angiogenesis, focusing on VEGF-targeting agents currently approved for use in clinical practice and will end with a discussion of newer VEGF-targeting agents in clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Algire G, Chalkley H, Legallais F, Park H (1945) Vasculae reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 6(1):73–85

    Google Scholar 

  2. Ehrmann RL, Knoth M (1968) Choriocarcinoma. Transfilter stimulation of vasoproliferation in the hamster cheek pouch. Studied by light and electron microscopy. J Natl Cancer Inst 41(6):1329–1341

    CAS  PubMed  Google Scholar 

  3. Greenblatt M, Shubi P (1968) Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41(1):111–124

    CAS  PubMed  Google Scholar 

  4. Greene HSN (1938) Heterologous transplantation of human and other mammalian tumors. Science 88(2285):357–358

    Article  CAS  PubMed  Google Scholar 

  5. Greene HSN (1941) Heterologous transplantation of mammalian tumors: I. The transfer of rabbit tumors to alien species. J Exp Med 73(4):461–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Greene HSN (1941) Heterologous transplantation of mammalian tumors: II. The transfer of human tumors to alien species. J Exp Med 73(4):475–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Folkman J (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  9. Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER (1998) Inactivation of the von hippel-lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Gene Chromosome Cancer 22(3):200–209

    Article  CAS  Google Scholar 

  10. Wenger RH, Gassmann M (1997) Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem 378(7):609–616

    CAS  PubMed  Google Scholar 

  11. Blancher C, Harris AL (1998) Cancer Metastasis Rev 17(2):187–194

    Article  CAS  PubMed  Google Scholar 

  12. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  13. Salceda S (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272(36):22642–22647

    Article  CAS  PubMed  Google Scholar 

  14. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1 is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci 95(14):7987–7992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  CAS  PubMed  Google Scholar 

  16. Sutter CH, Laughner E, Semenza GL (2000) Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci U S A 97(9):4748–4753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rini BI, Rathmell WK (2007) Biological aspects and binding strategies of vascular endothelial growth factor in renal cell carcinoma. Clin Cancer Res 13(2):741s–746s

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm SM (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  CAS  PubMed  Google Scholar 

  19. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    Article  CAS  PubMed  Google Scholar 

  20. Escudier B, Szczylik C, Hutson TE et al (2009) Randomized phase II trial of first-line treatment with sorafenib versus interferon alfa-2a in patients with metastatic renal cell carcinoma. J Clin Oncol 27(8):1280–1289

    Article  CAS  PubMed  Google Scholar 

  21. Hutson TE, Escudier B, Esteban E et al (2014) Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol 32(8):760–767

    Article  CAS  PubMed  Google Scholar 

  22. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337

    CAS  PubMed  Google Scholar 

  23. Motzer RJ (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24(1):16–24

    Article  CAS  PubMed  Google Scholar 

  24. Motzer RJ, Rini BI, Bukowski RM et al (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295(21):2516

    Article  CAS  PubMed  Google Scholar 

  25. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124

    Article  CAS  PubMed  Google Scholar 

  26. Motzer RJ, Hutson TE, Tomczak P et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27(22):3584–3590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Escudier B, Roigas J, Gillessen S et al (2009) Phase II study of sunitinib administered in a continuous once-daily dosing regimen in patients with cytokine-refractory metastatic renal cell carcinoma. J Clin Oncol 27(25):4068–4075

    Article  CAS  PubMed  Google Scholar 

  28. Motzer RJ, Hutson TE, Olsen MR et al (2012) Randomized phase II trial of sunitinib on an intermittent versus continuous dosing schedule as first-line therapy for advanced renal cell carcinoma. J Clin Oncol 30(12):1371–1377

    Article  CAS  PubMed  Google Scholar 

  29. Najjar YG, Mittal K, Elson P et al (2014) A 2 weeks on and 1 week off schedule of sunitinib is associated with decreased toxicity in metastatic renal cell carcinoma. Eur J Cancer 50(6):1084–1089

    Article  CAS  PubMed  Google Scholar 

  30. Rini BI, Michaelson MD, Rosenberg JE et al (2008) Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J Clin Oncol 26(22):3743–3748

    Article  CAS  PubMed  Google Scholar 

  31. Hurwitz HI, Dowlati A, Saini S et al (2009) Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15(12):4220–4227

    Article  CAS  PubMed  Google Scholar 

  32. Hutson TE, Davis ID, Machiels JP et al (2010) Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol 28(3):475–480

    Article  CAS  PubMed  Google Scholar 

  33. Sternberg CN, Davis ID, Mardiak J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28(6):1061–1068

    Article  CAS  PubMed  Google Scholar 

  34. Motzer RJ, Hutson TE, Cella D et al (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369(8):722–731

    Article  CAS  PubMed  Google Scholar 

  35. Escudier B, Porta C, Bono P et al (2014) Randomized, controlled, double-blind, cross-over trial assessing treatment preference for pazopanib versus sunitinib in patients with metastatic renal cell carcinoma: PISCES study. J Clin Oncol 32(14):1412–1418

    Article  CAS  PubMed  Google Scholar 

  36. Escudier B, Pluzanska A, Koralewski P et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605):2103–2111

    Article  PubMed  Google Scholar 

  37. Rini BI, Halabi S, Rosenberg JE et al (2008) Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26(33):5422–5428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rini BI, Halabi S, Rosenberg JE et al (2010) Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol 28(13):2137–2143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rixe O, Bukowski RM, Michaelson MD et al (2007) Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol 8(11):975–984

    Article  PubMed  Google Scholar 

  40. Rini BI, Wilding G, Hudes G et al (2009) Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol 27(27):4462–4468

    Article  CAS  PubMed  Google Scholar 

  41. Rini BI, Escudier B, Tomczak P et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378(9807):1931–1939

    Article  CAS  PubMed  Google Scholar 

  42. Hutson TE, Lesovoy V, Al-Shukri S et al (2013) Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol 14(13):1287–1294

    Article  CAS  PubMed  Google Scholar 

  43. Rini BI, Melichar B, Ueda T et al (2013) Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol 14(12):1233–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sridhar SS, Mackenzie MJ, Hotte SJ et al (2013) A phase II study of cediranib (AZD 2171) in treatment naive patients with progressive unresectable recurrent or metastatic renal cell carcinoma. A trial of the PMH phase 2 consortium. Invest New Drugs 31(4):1008–1015

    Article  CAS  PubMed  Google Scholar 

  45. Mulders P, Hawkins R, Nathan P et al (2009) 49LBA final results of a phase II randomised study of cediranib (RECENTIN™) in patients with advanced renal cell carcinoma (RCC). Eur J Cancer Suppl 7(3):21

    Article  Google Scholar 

  46. Nosov DA, Esteves B, Lipatov ON et al (2012) Antitumor activity and safety of tivozanib (AV-951) in a phase II randomized discontinuation trial in patients with renal cell carcinoma. J Clin Oncol 30(14):1678–1685

    Article  CAS  PubMed  Google Scholar 

  47. Bhargava P, Robinson MO (2011) Development of second-generation VEGFR tyrosine kinase inhibitors: current status. Curr Oncol Rep 13(2):103–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Motzer RJ, Nosov D, Eisen T et al (2013) Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J Clin Oncol 31(30):3791–3799

    Article  CAS  PubMed  Google Scholar 

  49. Eisen T, Joensuu H, Nathan PD et al (2012) Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: a single-group phase 2 trial. Lancet Oncol 13(10):1055–1062

    Article  CAS  PubMed  Google Scholar 

  50. Motzer RJ, Porta C, Vogelzang NJ et al (2014) Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol 15(3):286–296

    Article  CAS  PubMed  Google Scholar 

  51. Holash J, Davis S, Papadopoulos N et al (2002) VEGF-trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci 99(17):11393–11398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Konner J, Dupont J (2004) Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer 4:S81–S85

    Article  CAS  PubMed  Google Scholar 

  53. Dupont J, Schwartz L, Koutcher J, Spriggs D, Gordon M, Mendelson D, Murren J, Lucarelli A, Cedarbaum J (2004) Phase I and pharmacokinetic study of VEGF trap administered subcutaneously (sc) to patients (pts) with advanced solid malignancies. ASCO Meet Abstr 22(14_suppl):3009

    Google Scholar 

  54. Dupont J, Rothenberg ML, Spriggs DR, Cedarbaum JM, Furfine ES, Cohen DP, Dancy I, Lee HS, Cooper W, Lockhart AC (2005) Safety and pharmacokinetics of intravenous VEGF trap in a phase I clinical trial of patients with advanced solid tumors. J Clin Oncol 2005 ASCO Annual Meeting Proceedings Abstract 23(No 16S (June 1 Supplement), 2005:3029)

    Google Scholar 

  55. Tannir NM, Wong YN, Kollmannsberger CK et al (2011) Phase 2 trial of linifanib (ABT-869) in patients with advanced renal cell cancer after sunitinib failure. Eur J Cancer 47(18):2706–2714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Garcia JA, Hudes GR, Choueiri TK et al (2014) A phase 2, single-arm study of ramucirumab in patients with metastatic renal cell carcinoma with disease progression on or intolerance to tyrosine kinase inhibitor therapy. Cancer 120(11):1647–1655

    Article  CAS  PubMed  Google Scholar 

  57. Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47(1):207–214

    Article  CAS  PubMed  Google Scholar 

  58. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. JNCI J Natl Cancer Inst 92(3):205–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Rini MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Mathias, J., Rini, B. (2015). Angiogenesis Inhibitor Therapy in Renal Cell Cancer. In: Lara, P., Jonasch, E. (eds) Kidney Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-17903-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17903-2_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17902-5

  • Online ISBN: 978-3-319-17903-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics