Skip to main content

Current Status of Time-Lapse Microscopy for Embryo Selection

  • Chapter
  • 866 Accesses

Abstract

One of the major barriers of in vitro fertilization (IVF) over the past three decades has been in decreasing the rate of multiple pregnancies. Multiple approaches have been taken in an attempt achieve better embryo selection, including time-lapse microscopy (TLM). This technology allows for the evaluation of embryo morphology in more detail than conventional observation at static time points, as well as for the definition of embryo morphokinetics (i.e., the precise timing of specific morphologic occurrences). So far, over 20 morphokinetic markers have been identified with the use of TLM; however, most of these markers have not been thoroughly validated in prospective or randomized controlled studies. Furthermore, inconsistencies in definitions make it difficult to compare various studies and draw sound conclusions. Because of these limitations, we do not think we are currently in a position to weigh the true benefit of using TLM for embryo selection, and until sufficient high-quality evidence exists, we believe that TLM should continue to be considered experimental and subject to institutional review and approval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Cleavage synchronicity from 4 to 8 cells—defined as the ratio of time an embryo spends developing from 5 to 8 cells in relation to the time it takes to develop from 4 to 8 cells

  2. 2.

    Cleavage synchronicity from 2 to 8 cells—defined as the ratio of time an embryo spends at the 2-cell and 4-cell stages in relation to the time it takes to develop from 2 to 8 cells

References

  1. Practice Committee of American Society for Reproductive M. Multiple gestation associated with infertility therapy: an American Society for Reproductive Medicine Practice Committee opinion. Fertil Steril. 2012;97(4):825–34.

    Article  Google Scholar 

  2. Workshop Group TEC. Multiple gestation pregnancy. Hum Reprod. 2000;15(8):1856–64.

    Article  Google Scholar 

  3. Ceyhan ST, Jackson K, Racowsky C. Selecting the most competent embryo. In: Voorhis BJ, Schlegel PN, Racowsky C, Carrell DT, editors. Biennial review of infertility. New York, NY: Humana Press; 2009. p. 143–69.

    Chapter  Google Scholar 

  4. Racowsky C, Ohno-Machado L, Kim J, Biggers JD. Is there an advantage in scoring early embryos on more than one day? Hum Reprod. 2009;24(9):2104–13.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Katz-Jaffe MG, McReynolds S. Embryology in the era of proteomics. Fertil Steril. 2013;99(4):1073–7.

    Article  PubMed  Google Scholar 

  6. Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86(3):678–85.

    Article  CAS  PubMed  Google Scholar 

  7. Dominguez F, Gadea B, Esteban FJ, Horcajadas JA, Pellicer A, Simon C. Comparative protein-profile analysis of implanted versus non-implanted human blastocysts. Hum Reprod. 2008;23(9):1993–2000.

    Article  CAS  PubMed  Google Scholar 

  8. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Uyar A, Seli E. Metabolomic assessment of embryo viability. Semin Reprod Med. 2014;32(2):141–52.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88(5):1350–7.

    Article  PubMed  Google Scholar 

  11. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90(1):77–83.

    Article  PubMed  Google Scholar 

  12. Hardarson T, Ahlstrom A, Rogberg L, Botros L, Hillensjo T, Westlander G, Sakkas D, Wikland M. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod. 2012;27(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  13. Vergouw CG, Kieslinger DC, Kostelijk EH, Botros LL, Schats R, Hompes PG, Sakkas D, Lambalk CB. Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum Reprod. 2012;27(8):2304–11.

    Article  CAS  PubMed  Google Scholar 

  14. Sfontouris IA, Lainas GT, Sakkas D, Iliadis GS, Anagnostara K, Zorzovilis IZ, Petsas GK, Lainas TG. Assessment of embryo selection using non-invasive metabolomic analysis as an adjunct to morphology indicates improvement in implantation and fetal cardiac activity rates. Hum Reprod. 2011;26 Suppl 1:i86–9.

    Article  Google Scholar 

  15. Gleicher N, Kushnir VA, Barad DH. Preimplantation genetic screening (PGS) still in search of a clinical application: a systematic review. Reprod Biol Endocrinol. 2014;12:22.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, Vogel NE, Arts EG, de Vries JW, Bossuyt PM, Buys CH, Heineman MJ, Repping S, van der Veen F. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  17. Practice Committee of Society for Assisted Reproductive T, Practice Committee of American Society for Reproductive M. Preimplantation genetic testing: a Practice Committee opinion. Fertil Steril. 2008;90(5 Suppl):S136–43.

    Google Scholar 

  18. Harton G, Braude P, Lashwood A, Schmutzler A, Traeger-Synodinos J, Wilton L, Harper JC, European Society for Human R, Embryology PGDC. ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum Reprod. 2011;26(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  19. Scott Jr RT, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, Tao X, Treff NR. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697–703.

    Article  PubMed  Google Scholar 

  20. Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, Peck AC, Sills ES, Salem RD. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5(1):24.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lewis WH, Gregory PW. Cinematographs of living developing rabbit-eggs. Science. 1929;69(1782):226–9.

    Article  CAS  PubMed  Google Scholar 

  22. Garrisi GJ, Chin AJ, Dolan PM, Nagler HM, Vasquez-Levin M, Navot D, Gordon JW. Analysis of factors contributing to success in a program of micromanipulation-assisted fertilization. Fertil Steril. 1993;59(2):366–74.

    CAS  PubMed  Google Scholar 

  23. Wong C, Chen AA, Behr B, Shen S. Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod Biomed Online. 2013;26(2):120–9.

    Article  CAS  PubMed  Google Scholar 

  24. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, Baker VL, Adamson GD, Abusief ME, Gvakharia M, Loewke KE, Shen S. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100(2):412–9. 2.

    Article  PubMed  Google Scholar 

  25. Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril. 2007;88(4 Suppl):1150–7.

    Article  CAS  PubMed  Google Scholar 

  26. Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci U S A. 2007;104(36):14289–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.

    Article  PubMed  Google Scholar 

  28. Ottosen LD, Hindkjaer J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J Assist Reprod Genet. 2007;24(2–3):99–103.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, Munoz M, Meseguer M. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011;28(7):569–73.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Human embryonic development after blastomere removal: a time-lapse analysis. Hum Reprod. 2012;27(1):97–105.

    Article  PubMed  Google Scholar 

  31. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9. 6.

    Article  PubMed  Google Scholar 

  32. Nakahara T, Iwase A, Goto M, Harata T, Suzuki M, Ienaga M, Kobayashi H, Takikawa S, Manabe S, Kikkawa F, Ando H. Evaluation of the safety of time-lapse observations for human embryos. J Assist Reprod Genet. 2010;27(2–3):93–6.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Azzarello A, Hoest T, Mikkelsen AL. Embryo kinetics in bright field vs dark field time-lapse in embryo selection for transfer. Fertil Steril. 2014;102(3):e213.

    Article  Google Scholar 

  34. Swain JE. Could time-lapse embryo imaging reduce the need for biopsy and PGS? J Assist Reprod Genet. 2013;30(8):1081–90.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sjoblom P, Menezes J, Cummins L, Mathiyalagan B, Costello MF. Prediction of embryo developmental potential and pregnancy based on early stage morphological characteristics. Fertil Steril. 2006;86(4):848–61.

    Article  PubMed  Google Scholar 

  36. Ergin EG, Caliskan E, Yalcinkaya E, Oztel Z, Cokelez K, Ozay A, Ozornek HM. Frequency of embryo multinucleation detected by time-lapse system and its impact on pregnancy outcome. Fertil Steril. 2014;102(4):1029–33. 4.

    Article  PubMed  Google Scholar 

  37. Medicine ASIR, Embryology ESIG. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod Biomed Online. 2011;22(6):632–46.

    Google Scholar 

  38. Huang TTF. First morphokinetic analysis of blastocyst expansion in human embryos of known positive implantation using an embryoscope. Fertil Steril. 2014;102(3):e217.

    Article  Google Scholar 

  39. Kirkegaard K, Kesmodel US, Hindkjaer JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod. 2013;28(10):2643–51.

    Article  CAS  PubMed  Google Scholar 

  40. Chamayou S, Patrizio P, Storaci G, Tomaselli V, Alecci C, Ragolia C, et al. The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet. 2013;30(5):703–10.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Freour T, Dessolle L, Lammers J, Lattes S, Barriere P. Comparison of embryo morphokinetics after in vitro fertilization-intracytoplasmic sperm injection in smoking and nonsmoking women. Fertil Steril. 2013;99(7):1944–50.

    Article  PubMed  Google Scholar 

  42. Armstrong S, Vail A, Mastenbroek S, Jordan V, Farquhar C. Time-lapse in the IVF-lab: how should we assess potential benefit? Hum Reprod. 2015;30(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kirkegaard K, Hindkjaer JJ, Grondahl ML, Kesmodel US, Ingerslev HJ. A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. J Assist Reprod Genet. 2012;29(6):565–72.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;7, CD002118.

    PubMed  Google Scholar 

  45. Munoz M, Cruz M, Humaidan P, Garrido N, Perez-Cano I, Meseguer M. Dose of recombinant FSH and oestradiol concentration on day of HCG affect embryo development kinetics. Reprod Biomed Online. 2012;25(4):382–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kawachiya S, Bodri D, Shimada N, Kato K, Takehara Y, Kato O. Blastocyst culture is associated with an elevated incidence of monozygotic twinning after single embryo transfer. Fertil Steril. 2011;95(6):2140–2.

    Article  PubMed  Google Scholar 

  47. Skiadas CC, Missmer SA, Benson CB, Gee RE, Racowsky C. Risk factors associated with pregnancies containing a monochorionic pair following assisted reproductive technologies. Hum Reprod. 2008;23(6):1366–71.

    Article  PubMed  Google Scholar 

  48. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99(3):632–41.

    Article  PubMed  Google Scholar 

  49. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21.

    Article  CAS  PubMed  Google Scholar 

  50. Hashimoto S, Kato N, Saeki K, Morimoto Y. Selection of high-potential embryos by culture in poly(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril. 2012;97(2):332–7.

    Article  PubMed  Google Scholar 

  51. Dal Canto M, Coticchio G, Mignini Renzini M, De Ponti E, Novara PV, Brambillasca F, Comi R, Fadini R. Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod Biomed Online. 2012;25(5):474–80.

    Article  PubMed  Google Scholar 

  52. Hlinka D, Kalatova B, Uhrinova I, Dolinska S, Rutarova J, Rezacova J, Lazarovska S, Dudas M. Time-lapse cleavage rating predicts human embryo viability. Physiol Res. 2012;61(5):513–25.

    CAS  PubMed  Google Scholar 

  53. Desai N, Ploskonka S, Goodman L, Austin C, Goldberg J, Falcone T. Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod Biol Endocrinol. 2014;12(1):54.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Cetinkaya M, Pirkevi C, Yelke H, Colakoglu YK, Atayurt Z, Kahraman S. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J Assist Reprod Genet. 2015;32(1):27–35.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Diamond MP, Suraj V, Behnke EJ, Yang X, Angle MJ, Lambe-Steinmiller JC, Watterson R, Athayde Wirka K, Chen AA, Shen S. Using the Eeva Test adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience. J Assist Reprod Genet. 2015;32:61–8.

    Article  PubMed  Google Scholar 

  56. Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31.

    Article  PubMed  Google Scholar 

  57. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  58. Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, Meseguer M. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102:1287–94.e5.

    Article  PubMed  Google Scholar 

  59. Pérez S, Rubio I, Aparicio B, Beltrán D, García-Láez V, Meseguer M. Prospective validation of a time-lapse based algorithm for embryo selection. Fertil Steril. 2014;102(3):e322.

    Article  Google Scholar 

  60. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escriba MJ, Bellver J, Meseguer M. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98(6):1458–63.

    Article  PubMed  Google Scholar 

  61. Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, Suraj V, Tan L, Shen S. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril. 2014;101(6):1637–48.e1–5.

    Article  PubMed  Google Scholar 

  62. Azzarello A, Hoest T, Mikkelsen AL. The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Hum Reprod. 2012;27(9):2649–57.

    Article  CAS  PubMed  Google Scholar 

  63. Chen AA, Tan L, Suraj V, Reijo Pera R, Shen S. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril. 2013;99(4):1035–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Melzer KE, McCaffrey C, Adler A, Colls P, Munne S, Grifo JA. Developmental morphology and continuous time-lapse microscopy (TLM) of human embryos: can we predict euploidy? Fertil Steril. 2012;98(3):S136.

    Article  Google Scholar 

  65. Semeniuk L, Mazur P, Mikitenko D, Nagorny V, Zukin V. Time-lapse and aCGH, is there any connection between ploidy and embryo cleavage timing on early stages of embryo development? Fertil Steril. 2013;99(3 Suppl):S6.

    Article  Google Scholar 

  66. Dogan S, Li F, Urich M, Fakih M, Shamma N, Abuzeid M, Khan I. Can we rely on only morphokinetic parameters to detect embryo aneuploidy? Fertil Steril. 2014;102(3):e177–8.

    Article  Google Scholar 

  67. Friedman BE, Chavez SL, Behr B, Lathi RB, Baker VL, Reijo Pera RA. Non-invasive imaging for the detection of human embryonic aneuploidy at the blastocyst stage. Fertil Steril. 2012;98(3):S38.

    Article  Google Scholar 

  68. Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, Behr B, Reijo Pera RA. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Hickman CF. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online. 2013;26(5):477–85.

    Article  PubMed  Google Scholar 

  70. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013;27(2):140–6.

    Article  PubMed  Google Scholar 

  71. Kramer Y, Kofinas J, Melzer K, Noyes N, McCaffrey C, McCulloh D, Grifo J. A pilot study evaluating ploidy predictive models via time lapse microscopy (TLM) morphokinetic parameters; exposing unlikely universal predictive methods. Fertil Steril. 2014;102(3):e86–7.

    Article  Google Scholar 

  72. Basile N, Nogales Mdel C, Bronet F, Florensa M, Riqueiros M, Rodrigo L, Garcia-Velasco J, Meseguer M. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699–704.

    Article  PubMed  Google Scholar 

  73. Yang Z, Zhang J, Salem SA, Liu X, Kuang Y, Salem RD, Liu J. Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes. BMC Med Genomics. 2014;7:38.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Bronet F, Nogales M, Martienz E, Ariza M, Liñan A, Rubio C, Garcia-Velasco JA, Meseguer M. Impact of embryo gender on morphokinetic behaviour. Fertil Steril. 2014;102(3):e210.

    Article  Google Scholar 

  75. Kofinas JD, Kramer Y, McCulloh DH, Grifo J. Time lapse (TLM) gender based differences in euploid versus aneuploid embryos. Fertil Steril. 2014;102(3):e282.

    Article  Google Scholar 

  76. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99(3):738–44. 3.

    Article  PubMed  Google Scholar 

  77. Wale PL, Gardner DK. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol Reprod. 2012;87(1):24. 1–8.

    Article  PubMed  Google Scholar 

  78. Ciray HN, Aksoy T, Goktas C, Ozturk B, Bahceci M. Time-lapse evaluation of human embryo development in single versus sequential culture media–a sibling oocyte study. J Assist Reprod Genet. 2012;29(9):891–900.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Basile N, Morbeck D, Garcia-Velasco J, Bronet F, Meseguer M. Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod. 2013;28(3):634–41.

    Article  CAS  PubMed  Google Scholar 

  80. Ergin E, Yalcinkaya E, Oztel Z, Cokelez K, Ozay A, Ozornek H. Comparison of the effects of two commercial sequential IVF culture media on embryo morphokinetics. Fertil Steril. 2014;102(3):e113.

    Article  Google Scholar 

  81. Cruz M, Garrido N, Gadea B, Munoz M, Perez-Cano I, Meseguer M. Oocyte insemination techniques are related to alterations of embryo developmental timing in an oocyte donation model. Reprod Biomed Online. 2013;27(4):367–75.

    Article  PubMed  Google Scholar 

  82. Aragonés M, Basile N, Pareja S, Cobo A, Bronet F, Meseguer M. The source of oocytes, fresh or vitrified, does not affect implantation potential based on kinetic markers. Fertil Steril. 2014;102(3):e72.

    Article  Google Scholar 

  83. De Vos A, Staessen C, De Rycke M, Verpoest W, Haentjens P, Devroey P, Liebaers I, Van de Velde H. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: a prospective cohort of single embryo transfers. Hum Reprod. 2009;24(12):2988–96.

    Article  PubMed  Google Scholar 

  84. Goossens V, De Rycke M, De Vos A, Staessen C, Michiels A, Verpoest W, Van Steirteghem A, Bertrand C, Liebaers I, Devroey P, Sermon K. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod. 2008;23(3):481–92.

    Article  PubMed  Google Scholar 

  85. Ben-Yosef D, Bar-El L, Shwartz T, Cohen T, Carmon A, Mey Raz N, Raviv S, Malcov M, Almog B, Azem F. Time-lapse microscopic analysis to verify how blastomere biopsy for PGD affects the dynamics of embryonic development. Fertil Steril. 2014;102(3):e19–20.

    Article  Google Scholar 

  86. Munoz M, Cruz M, Humaidan P, Garrido N, Perez-Cano I, Meseguer M. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol. 2013;168(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  87. Munné S, Chen S, Colls P, Garrisi J, Zheng X, Cekleniak N, Lenzi M, Hughes P, Fischer J, Garrisi M, Tomkin G, Cohen J. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online. 2007;14(5):628–34.

    Article  PubMed  Google Scholar 

  88. Watcharaseranee N, Ploskonka S, Goldberg J, Falcone T, Desai N. Does advancing maternal age affect morphokinetic parameters during embryo development? Fertil Steril. 2014;102(3):e213–4.

    Article  Google Scholar 

  89. Bellver J, Mifsud A, Grau N, Privitera L, Meseguer M. Similar morphokinetic patterns in embryos derived from obese and normoweight infertile women: a time-lapse study. Hum Reprod. 2013;28(3):794–800.

    Article  CAS  PubMed  Google Scholar 

  90. Goldman KN, Kramer YG, Melzer-Ross K, Grifo JA. Investigating the impact of body mass index (BMI) on embryo morphokinetics using time-lapse embryo imaging. Fertil Steril. 2014;102(3):e259.

    Article  Google Scholar 

  91. Wissing ML, Bjerge MR, Olesen AI, Hoest T, Mikkelsen AL. Impact of PCOS on early embryo cleavage kinetics. Reprod Biomed Online. 2014;28(4):508–14.

    Article  CAS  PubMed  Google Scholar 

  92. Polanski LT, Coelho Neto MA, Nastri CO, Navarro PA, Ferriani RA, Raine-Fenning N, Martins WP. Time-lapse embryo imaging for improving reproductive outcomes: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;44(4):394–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Racowsky PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bormann, C.L., Dolinko, A.V., Racowsky, C. (2015). Current Status of Time-Lapse Microscopy for Embryo Selection. In: Carrell, D., Schlegel, P., Racowsky, C., Gianaroli, L. (eds) Biennial Review of Infertility. Springer, Cham. https://doi.org/10.1007/978-3-319-17849-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17849-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17848-6

  • Online ISBN: 978-3-319-17849-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics