Advertisement

Formation of the Earth’s Silicate Mantle

  • Vsevolod N. AnfilogovEmail author
  • Yurij V. Khachay
Chapter
  • 438 Downloads
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

This chapter discusses the energy source and the matter content from which the initial Earth’s mantle was formed. The PT conditions by which the mantle accumulation is provided are defined. Attention is drawn to the role of chondrites of different composition in the frame of the Earth’s heterogeneous accumulation model. The conditions are formulated by which a melted layer at the bottom of the mantle is formed. At the bottom boundary of the layer fraction crystallization occurs. The crystallization of Mg-pyroxene and magnesio-wüstite will lead to the formation at the bottom of the mantle of a layer comprising a mixture of these minerals. We note that, based on seismic data, it can be concluded that, namely by that mineral association, there exists a transition layer “D” on the modern core–mantle boundary. The boundaries between layers shift following the body’s growing surface.

Keywords

Matter composition Initial mantle Mineral association of the transition layer “D” Shifting of the layer’s boundary 

References

  1. 1.
    Ringwood A (1982) Origin of the earth and moon. Springer-Verlag, New York (1979). Russian version: Nedra, Moscow (in Russian)Google Scholar
  2. 2.
    Urey H (1956) Abundances of the elements. Rev Mod Phys 28:53–57CrossRefGoogle Scholar
  3. 3.
    Fisher D (1987) The birth of the earth. Columbia University Press, New YorkGoogle Scholar
  4. 4.
    Gopel C, Manhes G, Allegre C (1994) U-Pb systematic of phosphates from unequilibrated ordinary chondrites. Earth Planet Sci Lett 121:153–171CrossRefGoogle Scholar
  5. 5.
    Amelin Y, Connelly J, Zartman R et al (2009) Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems. Geochim Cosmochim Acta 73:5212–5223CrossRefGoogle Scholar
  6. 6.
    Bouvier A, Blichert-Toft V, Moynier F et al (2007) Pb-Pb dating constraints on accretion and cooling history of chondrites. Geochim Cosmochim Acta 71:1583–1604CrossRefGoogle Scholar
  7. 7.
    Krot A, Amelin Y, Bland P et al (2009) Origin and chronology of chondritic components: a review. Geochim Cosmochim Acta 73:4963–4997CrossRefGoogle Scholar
  8. 8.
    Shersten A, Elliot T, Hawskesworth C et al (2006) Hf-W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet Sci Lett 241:530–542CrossRefGoogle Scholar
  9. 9.
    Kleine N, Mezger K, Palme H et al (2005) Early core formation and late accretion of chondrite parent bodies: evidence from 182Hf-182W in CAIs, metal rich chondrites and iron meteorites. Geochim Cosmochim Acta 69:5805–5818CrossRefGoogle Scholar
  10. 10.
    Amelin Y, Krot A (2007) Pb isotopic age of the Allende chondrules. Meteorit Planet Sci 42:1321–1337CrossRefGoogle Scholar
  11. 11.
    Kleine T, Touboul M, Bourdon B et al (2009) Hf-W chronology of accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188CrossRefGoogle Scholar
  12. 12.
    Dodd R (1986) Meteorites: a petrologic-chemical synthesis. Mir, Moscow (in Russian)Google Scholar
  13. 13.
    Mittelefehldt D, McCoy T, Goodrich C et al (1998) Non-chondritic meteorites from asteroid bodies. Rev Min 36:1–195Google Scholar
  14. 14.
    Chen J, Tilton G (1976) Isotopic lead investigations of the Allende carbonaceous chondrite. Geochim Cosmochim Acta 40:635–643CrossRefGoogle Scholar
  15. 15.
    Tatsumoto M, Unruh D, Desborough G (1976) U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil. Geochim Cosmochim Acta 40:617–634CrossRefGoogle Scholar
  16. 16.
    Herzberg C, Zang J (1996) Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J Geophys Res 101(B4):8271–8295CrossRefGoogle Scholar
  17. 17.
    Safronov V (1969) Evolution of the protoplanetary cloud and formation of the earth and the planets. Nauka, Moscow (in Russian)Google Scholar
  18. 18.
    Merk R, Breuer D, Spohn T (2002) Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion. Icarus 159:183–191CrossRefGoogle Scholar
  19. 19.
    Anfilogov V, Khachay Y (2005) A possible scenario of material differentiation at initial stage of the Earth’s formation. Dokl Earth Sci 403A:954–947 (in Russian) Google Scholar
  20. 20.
    Yang J, Goldstein J, Scott E (2007) Iron meteorite evidence for early formation and catastrophic disruption of proto-planets. Nature 446(7138):888–891CrossRefGoogle Scholar
  21. 21.
    Yang J, Goldstein J, Scott E (2008) Metallographic cooling rates and origin of IVA iron meteorites. Geochim Cosmochim Acta 12:3043–3061CrossRefGoogle Scholar
  22. 22.
    Brearley A, Jones R (1998) Chondrite meteorites. Rev Min 36:83–190Google Scholar
  23. 23.
    Anfilogov V, Bykov V, Osipov A (2005) Silicate melts. Nauka, Moscow (in Russian)Google Scholar
  24. 24.
    Belogub E, Kozlov E, Yu Z et al (1999) Transformation of rocks of spherical stress waves. Uralskiy Mineralogicheskiy Sbornic № 9. Ural Branch of RUS Press. MIASS, pp 206–223 (in Russian)Google Scholar
  25. 25.
    Tomeoka K, Ohnishi I (2011) A hydrated class in the Mokoia CV3 carbonaceous chondrite: evidence for intensive aqueous alteration in the CV parent body. Geochim Cosmochim Acta 75:6064–6079CrossRefGoogle Scholar
  26. 26.
    Burkhardt C, Kleine T, Bourdon B et al (2008) Hf-W mineral isochronal for Ca, Al-rich inclusions: Age of the solar system and timing of core formation in planetesimals. Geochim Cosmochim Acta 72:6177–6197CrossRefGoogle Scholar
  27. 27.
    Babechuk M, Kamber B, Greig A et al (2010) The behavior of tungsten during mantle melting revised with implications for planetary differentiation time scale. Geochim Cosmochim Acta 74:1448–1470CrossRefGoogle Scholar
  28. 28.
    Anfilogov V, Khachay Y (2013) Evolution of core and silicate envelopes at heterogeneous accumulation of the Earth. Lithosphera 4:146–153 (in Russian) Google Scholar
  29. 29.
    Khachay Y, Anfilogov V (2009) Variant of temperature distributions in the Earth on its accumulation. In: The study of the earth as planet by methods of geophysics, geodesy and astronomy. Proceedings 6th Orlov Conference, Kiev, pp 197–202Google Scholar
  30. 30.
    Khachay Y, Anfilogov V (2009) The temperature distribution numerical models for the Earth envelopes at its accumulation stages. In: Geodynamics. Deep structure. The Earth’s thermal field. Geophysical fields interpretation. Proceedings 5th Conference on behalf of Bulashevich. Ekaterinburg, pp 520–522 (in Russian)Google Scholar
  31. 31.
    Marakushev A (1991) The early earth’s crust on meteorite investigation data. In: Early Crust: The Composition and Age. Nauka, Moscow, pp 27–38 (in Russian) Google Scholar
  32. 32.
    Mason B (1962) Meteorites. Wiley, New YorkGoogle Scholar
  33. 33.
    Agee C, Li J, Shannon M et al (1995) Pressure-temperature phase diagram for the Allende meteorite. J Geophys Res 100(B9):17725–17740CrossRefGoogle Scholar
  34. 34.
    Tikhonov A, Liubimova E, Vlasov V (1969) About the evolution of fusion zones in the thermal history of the earth. Dokl Acad Sci USSR 188:338–342 (in Russian)Google Scholar
  35. 35.
    Saxena S, Lasor P, Dubrovinsky L (2000) A model of earth’s deep interior based on mineralogical data. Mineral Petrol 69(1):1–10CrossRefGoogle Scholar
  36. 36.
    Herlund J, Thomas C, Trackley P (2005) A doubling of the post-perovskite phase boundary and structure of the earth’s lower mantle. Nature 434:882–886CrossRefGoogle Scholar
  37. 37.
    Ozava H, Hirise K, Mitome M et al (2009) Experimental study of reaction between perovskite band molten iron to 146 GPa and implication for chemically distinct buoyant layer at the top of the core. Phys Chem Miner 36:365–363Google Scholar
  38. 38.
    Ringwood A, Hibberson W (1990) The system Fe-FeO revised. Phys Chem Miner 17:313–319CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute of MineralogyRussian Academy of SciencesMiassRussia
  2. 2.Institute of GeophysicsRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations