Advertisement

The Model of the Earth’s Heterogeneous Accumulation

  • Vsevolod N. AnfilogovEmail author
  • Yurij V. Khachay
Chapter
  • 434 Downloads
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

This chapter presents an overview of the main conditions demanded by the experimental data that the models of the Earth’s formation have to satisfy. We suggest a new model of the Earth’s heterogeneous accumulation. The results of the numerical modeling, presented in this chapter, of the temperature distribution in the pre-planetary body allow us to determine that the heat released due to the decay of short-living radioactive elements can provide the melted state in the inner parts of bodies with sizes greater than 50 km.

Keywords

Heterogeneous accumulation Short-living isotopes Experimental data Numerical modeling Pre-planetary body 

References

  1. 1.
    Ringwood A (1982) Origin of the Earth and Moon. Nedra, Moscow (in Russian)Google Scholar
  2. 2.
    Safronov V (1969) Evolution of the protoplanetary cloud and formation of the Earth and the planets. Nauka, Moscow (in Russian)Google Scholar
  3. 3.
    Kuskov O, Khitarov N (1982) Thermodynamics and geochemistry of the Earth’s core and mantle. Nauka, Moscow (in Russian)Google Scholar
  4. 4.
    Sorokhtin O, Ushakov S (1991) The global evolution of the Earth. Moscow University Press, Moscow (in Russian)Google Scholar
  5. 5.
    Miyake Y (1965) Elements of geochemistry. Muruzen, TokyoGoogle Scholar
  6. 6.
    Turekian K, Clark S (1969) Inhomogeneous accumulation of the Earth from the primitive solar nebula. Earth Planet Sci Lett 6:346–348CrossRefGoogle Scholar
  7. 7.
    Grossman L (1972) Condensation in the primitive solar nebula. Geochim et Cosmochim Acta 36:597–619CrossRefGoogle Scholar
  8. 8.
    Anders E (1968) Chemical processes in the early solar system, as inferred from meteorites. Account Chem Res 1:289–298CrossRefGoogle Scholar
  9. 9.
    Anderson D, Sammis C, Jordan T (1972) Composition of the mantle and core. In: Robertson E (ed) The nature of the solid Earth. McGraw-Hill, New York, pp 41–66Google Scholar
  10. 10.
    Cameron A (1973) Accumulation processes in the primitive solar nebula. Icarus 18:407–450CrossRefGoogle Scholar
  11. 11.
    Voitkevich G, Miroshnikov A, Povarennikh A et al (1977) Handbook on geochemistry. Nedra Press, Moscow (in Russian)Google Scholar
  12. 12.
    Dodd R (1986) Meteorites. A petrologic-chemical synthesis. Mir, Moscow (in Russian)Google Scholar
  13. 13.
    Davis A, Richter F (2003) Condensation and evaporation of Solar system material. In: Davis A, Holland HD, Turekian KK (eds) Treatise on geochemistry. Meteorites, comets and planets, vol 1, pp 407–427Google Scholar
  14. 14.
    Grossman L, Larimer J (1974) Early chemical history of the solar system. Rev Geophys Space Phys 12:71–101CrossRefGoogle Scholar
  15. 15.
    Anfilogov V, Khachay Y (2005) A possible scenario of material differentiation at initial stage of the Earth’s formation. Dokl Earth Sci 403A:954–947Google Scholar
  16. 16.
    Stolper E (1982) Crystallization sequences of Ca-Al inclusions from Allende: An experimental study. Geochim et Cosmochim Acta 46(11):2159–2180CrossRefGoogle Scholar
  17. 17.
    Shersten A, Elliot T, Hawskesworth C et al (2006) Hf-W evidence for rapid differentiation of iron meteorite parental bodies. Earth Planet Sci Lett 241:530–542CrossRefGoogle Scholar
  18. 18.
    Amelin Y, Krot A (2007) Pb isotopic age of the Allende chondrules. Meteorit Planet Sci 42:1321–1337CrossRefGoogle Scholar
  19. 19.
    Connelly R, Amelin Y, Krot A et al (2008) Chronology of the solar system’s oldest solids. Astrophys J 675:L121–L124CrossRefGoogle Scholar
  20. 20.
    Krot A, Amelin Y, Bland P et al (2009) Origin and chronology of chondritic components. A review. Geochim et Cosmochim Acta 73:4963–4997CrossRefGoogle Scholar
  21. 21.
    Harper C, Jacobsen S (1996) Evidence for 182Hf in the early solar system and constraints in the timescale of terrestrial accretion and core formation. Geochim et Cosmochim Acta 60:1131–1153CrossRefGoogle Scholar
  22. 22.
    Kleine N, Mezger K, Palme H et al (2005) Early core formation and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal rich chondrites and iron meteorites. Geochim et Cosmochim Acta 69:5805–5818CrossRefGoogle Scholar
  23. 23.
    Kleine T, Touboul M, Bourdon B et al (2009) Hf-W chronology of accretion and early evolution of asteroids and terrestrial planets. Geochim et Cosmochim Acta 73:5150–5188CrossRefGoogle Scholar
  24. 24.
    Merk R, Breuer D, Spohn T (2002) Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion. Icarus 159:183–191CrossRefGoogle Scholar
  25. 25.
    Lee T, Papanastassiou T, Wasserburg G (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys Res Lett 3:109–112CrossRefGoogle Scholar
  26. 26.
    Pechernikova G, Vitjasev A (2005) Impacts and the early Earth evolution in catastrophic action of cosmic bodies. In: Adushkin VV (ed) Academkniga Press, Moscow (in Russian)Google Scholar
  27. 27.
    Walter M, Tronnes R (2004) Early Earth differentiation. Earth Planet Sci Lett 225:253–269CrossRefGoogle Scholar
  28. 28.
    Chambers J, Wetherill G (1998) Modeling of the terrestrial planets: N-body integration of preplanetary bodies in three dimensions. Icarus 136:304–327CrossRefGoogle Scholar
  29. 29.
    Agnor C, Capur R, Levison H (1999) On the character and consequences of large impacts in the late stage of terrestrial planets formation. Icarus 142:219–237CrossRefGoogle Scholar
  30. 30.
    Nichols R (2000) Short-living radionuclides in meteorites: constraints on nebular time scales to the production of solids. Space Sci Rev 1–2:113–122CrossRefGoogle Scholar
  31. 31.
    Ghosh A, Sween H (1998) The thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 143:187–206CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute of MineralogyRussian Academy of SciencesMiassRussia
  2. 2.Institute of GeophysicsRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations