Skip to main content

Functional Role of Nitric Oxide Under Abiotic Stress Conditions

  • Chapter
  • First Online:
Nitric Oxide Action in Abiotic Stress Responses in Plants

Abstract

Nitric oxide (NO), a free radical in living organisms, is considered a phytohormone and a key signalling molecule functioning in various physiological processes of plants. These physiological processes include germination, growth, senescence, and photosynthesis as well as response mechanisms to specific environmental stresses. Plants under abiotic stress conditions experience oxidative and nitrosative stress ; the latter mainly elicited by regulation of NO production. Nitrosative stress describes the molecular or cellular damage promoted by imbalance in NO homeostasis and other reactive nitrogen species . Additionally, depending on its concentration and location in plant cells or tissues, NO might function as an antioxidant and scavenge some other reactive intermediates. Direct or indirect involvement of NO in response mechanisms under water stress, drought, salinity, heavy metal stress, high or low temperature extremities, and ultraviolet radiation has been reported. In this work, the recent findings and current knowledge on the function of NO in plants under abiotic stress conditions are reviewed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    CAS  PubMed  Google Scholar 

  • Aftab T, Khan MM, Naeem M et al (2012) Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity. Ecotoxicol Environ Saf 80:60–68

    CAS  PubMed  Google Scholar 

  • Ahlfors R, Brosche M, Kollist H, Kangasjarvi J (2009) Nitric oxide modulates ozone induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J 58:1–12

    CAS  PubMed  Google Scholar 

  • Airaki M, Leterrier M, Mateos RM et al (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35:281–295

    CAS  PubMed  Google Scholar 

  • An L, Liu Y, Zhang M et al (2005) Effect of nitric oxide on growth of maize seedling leaves in presence or absence of ultraviolet-B radiation. J Plant Physiol 162:317–326

    CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA (2011) The message of nitric oxide in cadmium challenged plants. Plant Sci 181:612–620

    CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J et al (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signalling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    CAS  PubMed  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J et al (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A et al (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57:1785–1793

    CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Benzarti S, Mohri S, Ono Y (2008) Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspicaerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa. Environ Toxicol 23:607–616

    CAS  PubMed  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008a) New insights into nitric oxide signalling in plants. Ann Rev Plant Biol 59:21–39

    CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A et al (2008b) Nitric oxide in plants: production and cross-talk with Ca2+ signalling. Mol Plant 1:218–228

    CAS  PubMed  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P et al (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyarshinov AV, Asafova EV (2011) Stress responses of wheat leaves to dehydration: participation of endogenous NO and effect of sodium nitroprusside. Russ J Plant Physiol 58:1034–1039

    CAS  Google Scholar 

  • Botrel A, Magne C, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652

    CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT et al (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    CAS  PubMed  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J et al (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocana A et al (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corpas FJ, Carreras A, Valderrama R et al (2007) Reactive nitrogen species and nitrosative stress in plants. Plant Stress 1:37–41

    Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM et al (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R et al (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    CAS  PubMed  Google Scholar 

  • Dat JF, Capelli N, Folzer H et al (2004) Sensing and signalling during plant flooding. Plant Physiol Biochem 42:273–282

    Google Scholar 

  • David A, Yadav S, Bhatla SC (2010) Sodium chloride stress induces nitric oxide accumulation in root tips and oil body surface accompanying slower oleosin degradation in sunflower seedlings. Physiol Plant 140:342–354

    CAS  PubMed  Google Scholar 

  • De Michele R, Vurro E, Rigo C et al (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    PubMed Central  PubMed  Google Scholar 

  • Distefano AM, Garcia-Mata C, Lamattina L, Laxalt AM (2008) Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ 31:187–194

    CAS  PubMed  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig D (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-Ribose. Proc Natl Acad Sci USA 95:10328–10333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ederli L, Morettini R, Borgogni A et al (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ederli L, Meier S, Borgogni A et al (2008) cGMP in ozone and NO-dependent responses. Plant Signal Behav 3:36–37

    PubMed Central  PubMed  Google Scholar 

  • Fan HF, Du CX, Guo SR (2013) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot 86:52–59

    CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H (2009) Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 195:254–261

    CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A et al (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    CAS  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    CAS  PubMed  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signalling. Science 302:100–103

    CAS  PubMed  Google Scholar 

  • Gupta DK, Srivastava S, Huang H et al (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Soil biology. Springer, Heidelberg

    Google Scholar 

  • Gupta DK, Inouhe M, Rodríguez-Serrano M et al (2013) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–1996

    CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  PubMed  Google Scholar 

  • Hao GP, Xing Y, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signalling of maize seedling. J Integr Plant Biol 50:435–442

    CAS  PubMed  Google Scholar 

  • Hao G, Du X, Zhao F et al (2009) Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tissue Organ Cult 97:175–185

    CAS  Google Scholar 

  • Hayat S, Yadav S, Wani AS et al (2012) Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Hortic Environ Biotechnol 53:362–367

    CAS  Google Scholar 

  • He HY, Zhan J, He LF, Gu MH (2012a) Nitric oxide signalling in aluminum stress in plants. Protoplasma 249:483–492

    CAS  PubMed  Google Scholar 

  • He HY, He LF, Gu MH, Li XF (2012b) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci 183:123–130

    CAS  PubMed  Google Scholar 

  • Hossain KK, Nakamura T, Yamasaki H (2011) Effect of nitric oxide on leaf non-photochemical quenching of fluorescence under heat stress conditions. Russ J Plant Physiol 58:629–633

    CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    CAS  Google Scholar 

  • Huang X, Stettmaier K, Michel C et al (2004) Nitric oxide is induced by wounding and influences jasmonic acid signalling in Arabidopsis thaliana. Planta 218:938–946

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Baron K, Manac’h-Little N et al (2005) Thehaemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot 96:557–564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ismail GSM (2012) Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34:1303–1311

    CAS  Google Scholar 

  • Jhanji S, Setia RC, Kaur N et al (2012) Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L. J Environ Biol 33:1027–1032

    CAS  PubMed  Google Scholar 

  • Jin JW, Xu YF, Huang YF (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. African J Biotech 9:1619–1627

    CAS  Google Scholar 

  • Karpets YV, Kolupaev YE, Yastreb TO (2011) Effect of sodium nitroprusside on heat resistance of wheat coleoptiles: dependence on the formation and scavenging of reactive oxygen species. Russ J Plant Physiol 58:1027–1033

    CAS  Google Scholar 

  • Karpets YV, Kolupaev E, Yastreb TO, Dmitriev OP (2012) Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide. Cytol Genetics 46:354–359

    Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide-Biol Chem 27:210–218

    CAS  Google Scholar 

  • Kopyra M, Stachon-Wilk M, Gwóźdź EA (2006) Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28:525–536

    CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    CAS  PubMed  Google Scholar 

  • Krasylenko YA, Yemets AI, Sheremet YA, Blume YB (2012) Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiol Plant 145:505–515

    CAS  PubMed  Google Scholar 

  • Kulik A, Anielska-Mazur A, Bucholc M et al (2012) SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress. Plant Physiol 160:868–883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    CAS  PubMed  Google Scholar 

  • Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin induced adventitious root formation in cucumber. Plant Physiol 147:188–198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    CAS  Google Scholar 

  • Laxalt AM, Raho N, Ten HA, Lamattina L (2007) Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells. J Biol Chem 282:21160–21168

    CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Fernández BO et al (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lei Y, Yin C, Li C (2007) Adaptive responses of Populus przewalskii to drought stress and SNP application. Acta Physiol Plant 29:519–526

    CAS  Google Scholar 

  • Leterrier M, Airaki M, Palma JM et al (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    CAS  PubMed  Google Scholar 

  • Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ 31:1606–1619

    CAS  PubMed  Google Scholar 

  • Ma JF, Shen R, Zhao Z et al (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    CAS  PubMed  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signalling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    CAS  Google Scholar 

  • Mahalingam R, Jambunathan N, Gunjan SK et al (2006) Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant Cell Environ 29:1357–1371

    CAS  PubMed  Google Scholar 

  • Moreau M, Lee GI, Wang Y et al (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J Biol Chem 283:32957–32967

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nasibi F, Kalantari KM (2009) Influence of nitric oxide in protection of tomato seedling against oxidative stress induced by osmotic stress. Acta Physiol Plant 31:1037–1044

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Neill S (2007) Interactions between abscisic acid, hydrogen peroxide and nitric oxide mediate survival responses during water stress. New Phytol 175:4–6

    CAS  PubMed  Google Scholar 

  • Neill S, Barroso R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson J (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    CAS  PubMed  Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño D et al (2012) S-nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pasqualini S, Meier S, Gehring C et al (2009) Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol 181:860–870

    CAS  PubMed  Google Scholar 

  • Pasqualini S, Reale L, Calderini O et al (2012) Involvement of protein kinases and calcium in the NO-signalling cascade for defence-gene induction in ozonated tobacco plants. J Exp Bot 63:4485–4496

    CAS  PubMed  Google Scholar 

  • Patakas AA, Zotos A, Beis AS (2010) Production, localisation and possible roles of nitric oxide in drought-stressed grapevines. Aust J Grape Wine R 16:203–209

    Google Scholar 

  • Qu HY, Feng YB, Wang MX et al (2006) Nitric oxide functions as a signal in ultraviolet-B induced inhibition of pea stems elongation. Plant Sci 170:994–1000

    CAS  Google Scholar 

  • Rao MV, Davis KR (2001) The physiology of ozone induced cell death. Planta 213:682–690

    CAS  PubMed  Google Scholar 

  • Rao KP, Vani G, Kumar K et al (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  PubMed  Google Scholar 

  • Rockel P, Strube F, Rockel A et al (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:1–7

    Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM et al (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    PubMed Central  PubMed  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K et al (2008) Physiology and biochemistry of water logging tolerance in plants. Biol Plant 52:401–412

    CAS  Google Scholar 

  • Sang J, Jiang M, Lin F et al (2008) Nitric oxide reduced hydrogen peroxide accumulation involved in water stress induced subcellular antioxidant defense in maize plants. J Integr Plant Biol 50:231–243

    CAS  PubMed  Google Scholar 

  • Sanchez C, Gates AJ, Meakin GE et al (2010) Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. Mol Plant Microbe Interact 23:702–711

    CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signalling in the wound response. Curr Opin Plant Biol 8:369–377

    CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J31:279–292

    Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27:1048–1059

    CAS  PubMed  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    CAS  Google Scholar 

  • Shi SY, Wang G, Wang YD et al (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide-Biol Chem 13:1–9

    CAS  Google Scholar 

  • Shi HT, Li RJ, Cai W et al (2012) Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Plant Cell Physiol 53:344–357

    CAS  PubMed  Google Scholar 

  • Shimoda Y, Nagata M, Suzuki A et al (2005) Symbiotic Rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    CAS  PubMed  Google Scholar 

  • Singh HP, Kaur S, Batish DR et al (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    CAS  PubMed  Google Scholar 

  • Song LL, Ding W, Zhao MG et al (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    CAS  PubMed  Google Scholar 

  • Srivastava S, Dubey RS (2012) Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves. Acta Physiol Plant 34:819–825

    CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L et al (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    CAS  PubMed  Google Scholar 

  • Tanou G, Filippou P, Belghazi M et al (2012) Oxidative and nitrosative-based signalling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    CAS  PubMed  Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27:171–181

    CAS  PubMed  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    CAS  PubMed  Google Scholar 

  • Tian X, Lei Y (2007) Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application.Russ. J Plant Physiol 54:676–682

    CAS  Google Scholar 

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    CAS  PubMed  Google Scholar 

  • Tossi V, Cassia R, Lamattina L (2009a) Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. J Plant Physiol 166:1336–1341

    CAS  PubMed  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2009b) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol 181:871–879

    CAS  PubMed  Google Scholar 

  • Tossi V, Cassia R, Bruzzone S et al (2012a) ABA says NO to UV-B: a universal response? Trends Plant Sci 17:510–517

    CAS  PubMed  Google Scholar 

  • Tossi V, Lombardo C, Cassi R, Lamattina L (2012b) Nitric oxide and flavonoids are systemically induced by UV-B in maize leaves. Plant Sci 193–194:103–109

    PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T et al (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:1–9

    Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1510

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HH, Huang JJ, Bi YR (2010) Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots. Plant Sci 179:281–288

    CAS  Google Scholar 

  • Wang YH, Li XC, Zhu-Ge Q et al (2012) Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. PLoS ONE 7:1–11

    Google Scholar 

  • Wang QH, Liang X, Dong YJ et al (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20

    CAS  Google Scholar 

  • Wawer I, Bucholc M, Astier J et al (2010) Regulation of Nicotianatabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J 429:73–83

    CAS  PubMed  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    CAS  PubMed  Google Scholar 

  • Winfield MO, Lu C, Wilson ID et al (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J8:749–771

    Google Scholar 

  • Wu XX, Zhu WM, Zhang H et al (2011) Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol Plant 33:1199–1209

    CAS  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    CAS  PubMed  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20

    CAS  PubMed  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xua M, Zhub Y, Dongb J et al (2012) Ozone induces flavonol production of Ginkgo biloba cells dependently on nitrate reductase-mediated nitric oxide signalling. Environ Exp Bot 75:114–119

    Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway of nitric oxide production: new features of an old enzyme. Trends Plant Sci 4:128–129

    PubMed  Google Scholar 

  • Yang LT, Qi YP, Chen LS et al (2012) Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis. Environ Exp Bot 82:1–13

    CAS  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 36:1–15

    CAS  PubMed  Google Scholar 

  • Yu Q, Sun L, Jin H et al (2012) Lead-induced nitric oxide generation plays a critical role in lead uptake by Pogonatherum crinitum root cells. Plant Cell Physiol 53:1728–1736

    CAS  PubMed  Google Scholar 

  • Yung BW, Feechan A, Yin M et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Google Scholar 

  • Zago E, Morsa S, Dat JF et al (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 141:404–411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Austr J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK et al (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao R, Sheng J, Lv S, Zheng Y et al (2011) Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biol Technol 62:121–126

    CAS  Google Scholar 

  • Zhang YY, Wang LL, Liu YL et al (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    CAS  PubMed  Google Scholar 

  • Zhang M, Dong J-F, Jin HH et al (2011) Ultraviolet-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signalling. Tree Physiol 31:798–807

    CAS  PubMed  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusun Eyidogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oz, M.T., Eyidogan, F., Yucel, M., Öktem, H.A. (2015). Functional Role of Nitric Oxide Under Abiotic Stress Conditions. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide Action in Abiotic Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-17804-2_2

Download citation

Publish with us

Policies and ethics