Skip to main content

Neural Development in Adolescence

  • Chapter
  • First Online:
Drug Abuse in Adolescence

Abstract

The development of the central nervous system involves several stages of maturation according to age. Several authors asserted that although human beings are born with a huge number of neurons approximately half of them are lost within the two first years of life. The rationale underlying this process is that the brain does not need an excessive number of nerve cells but need to amplify the already existing connections, increasing the number of synapses. In other words, during the course of development, the nervous system prioritizes qualitative aspects (improved transmission among and integration of neurons via synapses) over quantitative aspects (a large number of neurons with rather isolated actions). Recently, Brazilian researchers elaborated new techniques to count neurons and found that their number is approximately 86 billion in healthy human beings. In certain brain areas, neurogenesis continues throughout life, particularly in the case of the hippocampus, a memory and learning critical area. That process is exacerbated during adolescence. Some authors have found higher levels of hippocampal neurogenesis in adolescent mice than in adults. In addition, this process seems to be highly sensitive to the action of drugs, such as alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilke M, Holland SK. Variability of gray and white matter during normal development: a voxel-based MRI analysis. Neuroreport. 2003;14(15):1887–90.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci. 2005;25(10):2518–21.

    Article  PubMed  Google Scholar 

  3. Herculano-Houzel S, Ribeiro P, Campos L, et al. Updated neuronal scaling rules for the brains of glires (rodents/lagomorphs). Brain Behav Evol. 2011;78(4):302–14.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Azevedo FA, Carvalho LR, Grinberg LT, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.

    Article  PubMed  Google Scholar 

  5. Bruel-Jungerman E, Rampon C, Laroche S. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci. 2007;18(2):93–114.

    Article  PubMed  Google Scholar 

  6. Toni N, Sultan S. Synapse formation on adult-born hippocampal neurons. Eur J Neurosci. 2011;33(6):1062–8.

    Article  PubMed  Google Scholar 

  7. He J, Crews FT. Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol Biochem Behav. 2007;86(2):327–33.

    Article  PubMed  Google Scholar 

  8. Crews FT, Mdzinarishvili A, Kim D, et al. Neurogenesis in adolescent brain is potently inhibited by ethanol. Neuroscience. 2006;137(2):437–45.

    Article  PubMed  Google Scholar 

  9. Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol. 2009;44(2):115–27.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev. 2007;56(2):283–321.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Alcaro A, Panksepp J. The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neurosci Biobehav Rev. 2011;35(9):1805–20.

    Article  PubMed  Google Scholar 

  12. Ernst M, Fudge JL. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neurosci Biobehav Rev. 2009;33(3):367–82.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ernst M, Pine DS, Hardin M. Triadic model of the neurobiology of motivated behavior in adolescence. Psychol Med. 2006;36(3):299–312.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ernst M, Romeo RD, Andersen SL. Neurobiology of the development of motivated behaviors in adolescence: a window into a neural systems model. Pharmacol Biochem Behav. 2009;93(3):199–211.

    Article  PubMed  Google Scholar 

  15. Bava S, Tapert SF. Adolescent brain development and the risk for alcohol and other drug problems. Neuropsychol Rev. 2010;20(4):398–413.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Chan T, Kyere K, Davis BR, et al. The role of the medial prefrontal cortex in innate fear regulation in infants, juveniles, and adolescents. J Neurosci. 2011;31(13):4991–9.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Forbes EE, Ryan ND, Phillips ML, et al. Healthy adolescents’ neural response to reward: associations with puberty, positive affect, and depressive symptoms. J Am Acad Child Adolesc Psychiatry. 2010;49(2):162–72 e161–5.

    PubMed Central  PubMed  Google Scholar 

  18. Mercuri NB, Calabresi P, Bernardi G. The electrophysiological actions of dopamine and dopaminergic drugs on neurons of the substantia nigra pars compacta and ventral tegmental area. Life Sci. 1992;51(10):711–8.

    Article  PubMed  Google Scholar 

  19. Spano PF, Di Chiara G, Tonon GC, et al. A dopamine-stimulated adenylate cyclase in rat substantia nigra. J Neurochem. 1976;27(6):1565–8.

    Article  PubMed  Google Scholar 

  20. Wedzony K, Czyrak A. Presence and function of dopamine D1 receptors in the rat ventral tegmental area. Pol J Pharmacol. 1997;49(5):277–81.

    PubMed  Google Scholar 

  21. Silva Jr N, Szobot CM, Anselmi CE, et al. Attention deficit/hyperactivity disorder: is there a correlation between dopamine transporter density and cerebral blood flow? Clin Nucl Med. 2011;36(8):656–60.

    Article  PubMed  Google Scholar 

  22. Sealfon SC. Dopamine receptors and locomotor responses: molecular aspects. Ann Neurol. 2000;47(4 Suppl 1):S12–19.

    PubMed  Google Scholar 

  23. Reymond MJ, Porter JC. Involvement of hypothalamic dopamine in the regulation of prolactin secretion. Horm Res. 1985;22(3):142–52.

    Article  PubMed  Google Scholar 

  24. Monti JM. Catecholamines and the sleep-wake cycle. I. EEG and behavioral arousal. Life Sci. 1982;30(14):1145–57.

    Article  PubMed  Google Scholar 

  25. Di Chiara G. Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol. 1999;375(1–3):13–30.

    Article  PubMed  Google Scholar 

  26. Bucholz KK. Nosology and epidemiology of addictive disorders and their comorbidity. Psychiatr Clin North Am. 1999;22(2):221–40.

    Article  PubMed  Google Scholar 

  27. Compton WM, Thomas YF, Stinson FS, et al. Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2007;64(5):566–76.

    Article  PubMed  Google Scholar 

  28. Jimenez-Castro L, Hare E, Medina R, et al. Substance use disorder comorbidity with schizophrenia in families of Mexican and Central American ancestry. Schizophr Res. 2010;120(1–3):87–94.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Qi Z, Kikuchi S, Tretter F, et al. Effects of dopamine and glutamate on synaptic plasticity: a computational modeling approach for drug abuse as comorbidity in mood disorders. Pharmacopsychiatry. 2011;44(Suppl 1):S62–S75.

    Article  PubMed  Google Scholar 

  30. Tarazi FI, Baldessarini RJ. Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int J Dev Neurosci. 2000;18(1):29–37.

    Article  PubMed  Google Scholar 

  31. Brenhouse HC, Sonntag KC, Andersen SL. Transient D1 dopamine receptor expression on prefrontal cortex projection neurons: relationship to enhanced motivational salience of drug cues in adolescence. J Neurosci. 2008;28(10):2375–82.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Camarini R, Griffin 3rd WC, Yanke AB, et al. Effects of adolescent exposure to cocaine on locomotor activity and extracellular dopamine and glutamate levels in nucleus accumbens of DBA/2J mice. Brain Res. 2008;1193:34–42.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci Lett. 1998;254(1):21–4.

    Article  PubMed  Google Scholar 

  34. Teicher MH, Andersen SL, Hostetter Jr JC. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res. 1995;89(2):167–72.

    Article  PubMed  Google Scholar 

  35. Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry. 2003;160(6):1041–52.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wills TA, Vaccaro D, McNamara G. Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger’s theory. J Subst Abuse. 1994;6(1):1–20.

    Article  PubMed  Google Scholar 

  37. Carrara-Nascimento PF, Griffin 3rd WC, Pastrello DM, et al. Changes in extracellular levels of glutamate in the nucleus accumbens after ethanol-induced behavioral sensitization in adolescent and adult mice. Alcohol. 2011;45(5):451–60.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Zhang Y, Loonam TM, Noailles PA, et al. Comparison of cocaine- and methamphetamine-evoked dopamine and glutamate overflow in somatodendritic and terminal field regions of the rat brain during acute, chronic, and early withdrawal conditions. Ann N Y Acad Sci. 2001;937:93–120.

    Article  PubMed  Google Scholar 

  39. Philpot R, Kirstein C. Developmental differences in the accumbal dopaminergic response to repeated ethanol exposure. Ann N Y Acad Sci. 2004;1021:422–6.

    Article  PubMed  Google Scholar 

  40. Philpot RM, Wecker L, Kirstein CL. Repeated ethanol exposure during adolescence alters the developmental trajectory of dopaminergic output from the nucleus accumbens septi. Int J Dev Neurosci. 2009;27(8):805–15.

    Article  PubMed  Google Scholar 

  41. Kalivas PW. Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotox Res. 2008;14(2–3):185–9.

    Article  PubMed  Google Scholar 

  42. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–13.

    Article  PubMed  Google Scholar 

  43. Garcia-Mijares M, Silva MTA. Dependência de drogas. Psicologia USP. 2006;17(4):27.

    Article  Google Scholar 

  44. Schildkraut JJ, Schanberg SM, Breese GR, et al. Norepinephrine metabolism and drugs used in the affective disorders: a possible mechanism of action. Am J Psychiatry. 1967;124(5):600–8.

    Article  PubMed  Google Scholar 

  45. Zhang XL, Wang GB, Zhao LY, et al. Clonidine improved laboratory-measured decision-making performance in abstinent heroin addicts. PLoS One. 2012;7(1):e29084.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Seu E, Lang A, Rivera RJ, et al. Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacol (Berl). 2009;202(1–3):505–19.

    Article  Google Scholar 

  47. Dickson RA, Maki E, Gibbins C, et al. Time courses of improvement and symptom remission in children treated with atomoxetine for attention-deficit/hyperactivity disorder: analysis of Canadian open-label studies. Child Adolesc Psychiatry Ment Health. 2011;5:14.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Poschel BP, Ninteman FW. Norepinephrine: a possible excitatory neurohormone of the reward system. Life Sci. 1963;10:782–8.

    Article  PubMed  Google Scholar 

  49. Roberts DC, Corcoran ME, Fibiger HC. On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav. 1977;6(6):615–20.

    Article  PubMed  Google Scholar 

  50. Jayanthi LD, Ramamoorthy S. Regulation of monoamine transporters: influence of psychostimulants and therapeutic antidepressants. AAPS J. 2005;7(3):E728–38.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol. 2003;479(1–3):23–40.

    Article  PubMed  Google Scholar 

  52. Rothman RB, Baumann MH, Dersch CM, et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39(1):32–41.

    Article  PubMed  Google Scholar 

  53. Sofuoglu M, Sewell RA. Norepinephrine and stimulant addiction. Addict Biol. 2009;14(2):119–29.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Emslie GJ. The psychopharmacology of adolescent depression. J Child Adolesc Psychopharmacol. 2012;22(1):2–4.

    Article  PubMed  Google Scholar 

  55. Laraia MT. Current approaches to the psychopharmacologic treatment of depression in children and adolescents. J Child Adolesc Psychiatr Nurs. 1996;9(1):15–26.

    Article  PubMed  Google Scholar 

  56. Sanders JD, Happe HK, Bylund DB, et al. Development of the norepinephrine transporter in the rat CNS. Neuroscience. 2005;130(1):107–17.

    Article  PubMed  Google Scholar 

  57. Sershen H, Shearman E, Fallon S, et al. The effects of acetaldehyde on nicotine-induced transmitter levels in young and adult brain areas. Brain Res Bull. 2009;79(6):458–62.

    Article  PubMed  Google Scholar 

  58. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Monti JM, Jantos H. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res. 2008;172:625–46.

    Article  PubMed  Google Scholar 

  60. MacLean MR, Dempsie Y. Serotonin and pulmonary hypertension: from bench to bedside? Curr Opin Pharmacol. 2009;9(3):281–6.

    Article  PubMed  Google Scholar 

  61. Bellingham GA, Peng PW. Duloxetine: a review of its pharmacology and use in chronic pain management. Reg Anesth Pain Med. 2010;35(3):294–303.

    Article  PubMed  Google Scholar 

  62. Lam DD, Garfield AS, Marston OJ, et al. Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav. 2010;97(1):84–91.

    Article  PubMed  Google Scholar 

  63. Chan JS, Snoeren EM, Cuppen E, et al. The serotonin transporter plays an important role in male sexual behavior: a study in serotonin transporter knockout rats. J Sex Med. 2011;8(1):97–108.

    Article  PubMed  Google Scholar 

  64. Rapport MM, Green AA, Page IH. Serum vasoconstrictor, serotonin: isolation and characterization. J Biol Chem. 1948;176(3):1243–51.

    PubMed  Google Scholar 

  65. Askenazy F, Caci H, Myquel M, et al. Relationship between impulsivity and platelet serotonin content in adolescents. Psychiatry Res. 2000;94(1):19–28.

    Article  PubMed  Google Scholar 

  66. Carver CS, Johnson SL, Joormann J. Two-mode models of self-regulation as a tool for conceptualizing effects of the serotonin system in normal behavior and diverse disorders. Curr Dir Psychol Sci. 2009;18(4):195–9.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Lambe EK, Krimer LS, Goldman-Rakic PS. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J Neurosci. 2000;20(23):8780–87.

    PubMed  Google Scholar 

  68. Andersen SL, Lyss PJ, Dumont NL, et al. Enduring neurochemical effects of early maternal separation on limbic structures. Ann N Y Acad Sci. 1999;877:756–9.

    Article  PubMed  Google Scholar 

  69. Schwandt ML, Lindell SG, Chen S, et al. Alcohol response and consumption in adolescent rhesus macaques: life history and genetic influences. Alcohol. 2010;44(1):67–80.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Van Oekelen D, Luyten WH, Leysen JE. 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci. 2003;72(22):2429–49.

    Article  PubMed  Google Scholar 

  71. Morilak DA, Ciaranello RD. Ontogeny of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain. Neuroscience. 1993;55(3):869–80.

    Article  PubMed  Google Scholar 

  72. Carpenter-Hyland EP, Chandler LJ. Adaptive plasticity of NMDA receptors and dendritic spines: implications for enhanced vulnerability of the adolescent brain to alcohol addiction. Pharmacol Biochem Behav. 2007;86(2):200–8.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Doremus-Fitzwater TL, Varlinskaya EI, Spear LP. Motivational systems in adolescence: possible implications for age differences in substance abuse and other risk-taking behaviors. Brain Cogn. 2010;72(1):114–23.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Clark DB. Pharmacotherapy for adolescent alcohol use disorder. CNS Drugs. 2012;26(7):559–69.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz Monezi Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andrade, A., De Micheli, D., da Silva, E., de Souza-Formigoni, M., de Oliveira Goeldner, F. (2016). Neural Development in Adolescence. In: De Micheli, D., Andrade, A., da Silva, E., de Souza Formigoni, M. (eds) Drug Abuse in Adolescence. Springer, Cham. https://doi.org/10.1007/978-3-319-17795-3_3

Download citation

Publish with us

Policies and ethics