Cognitive Development, Learning and Drug Use

  • Adriana Sampaio
  • Ana Raquel Mesquita
  • Óscar Filipe Gonçalves
Chapter

Abstract

In this chapter we will review the neurophysiology of the endocannabinoid system, as well as its implication for cognitive processes. Particularly, we will describe the major neurocognitive effects of cannabis following different periods of abstinence and underlying changes in brain structure and function. Overall, the studies suggest neurotoxic and functional effects following exposure to cannabis in adolescence, a critical neurodevelopmental vulnerability period to the adverse effects of exposure to exogenous cannabinoids.

References

  1. 1.
    Johnston LD, O’Malley PM, Bachman JG, et al. Monitoring the future national results on adolescent drug use: overview of key findings, 2010. Ann Arbor: Institute for Social Research, The University of Michigan; 2011.Google Scholar
  2. 2.
    Kuepper R, van Os J, Lieb R, et al. Continued cannabis use and risk of incidence and persistence of psychotic symptoms: 10 year follow-up cohort study. BMJ. 2011;342:738.Google Scholar
  3. 3.
    Sanches RF, Marques JM. Cannabis and mood. Rev Bras Psiquiatr. 2010;32(2):173–80.Google Scholar
  4. 4.
    Degenhardt L, Coffey C, Carlin JB, et al. Outcomes of occasional cannabis use in adolescence: 10-year follow-up study in Victoria, Australia. Br J Psychiatry. 2010;196:290–5.Google Scholar
  5. 5.
    Gogtay N, Thompson PM. Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn. 2010;72(1):6–15.Google Scholar
  6. 6.
    Schmithorst VJ, Yuan W. White matter development during adolescence as shown by diffusion MRI. Brain Cogn. 2010;72(1):16–25.Google Scholar
  7. ­7.
    Steinberg L. Cognitive and affective development in adolescence. Trends Cogn Sci. 2005;9(2):69–74.Google Scholar
  8. 8.
    Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561–4.Google Scholar
  9. 9.
    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.Google Scholar
  10. 10.
    Herkenham M, Lynn AB, Johnson MR, et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11(2):563–83.Google Scholar
  11. 11.
    Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77(2):299–318.Google Scholar
  12. 12.
    Huestis MA, Gorelick DA, Heishman SJ, et al. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry. 2001;58(4):322–8.Google Scholar
  13. 13.
    Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.Google Scholar
  14. 14.
    Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97.Google Scholar
  15. 15.
    Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002;296(5568):678–82.Google Scholar
  16. 16.
    Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–84.Google Scholar
  17. 17.
    Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33(1):18–41.Google Scholar
  18. 18.
    Chevaleyre V, Takahashi KA, Castillo PE. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci. 2006;29:37–76.Google Scholar
  19. 19.
    Schlicker E, Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci. 2001;22(11):565–72.Google Scholar
  20. 20.
    Mato S, Chevaleyre V, Robbe D, et al. A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci. 2004;7(6):585–6.Google Scholar
  21. 21.
    Sim-Selley LJ, Martin BR. Effect of chronic administration of R-(+ )-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]– 1,4-b enzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212–2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice. J Pharmacol Exp Ther. 2002;303(1):36–44.Google Scholar
  22. 22.
    Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24(4):417–63.Google Scholar
  23. 23.
    Andersen SL, Rutstein M, Benzo JM, et al. Sex differences in dopamine receptor overproduction and elimination. Neuroreport. 1997;8(6):1495–8.Google Scholar
  24. 24.
    Tseng KY, O’Donnell P. D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse. 2007;61(10):843–50.Google Scholar
  25. 25.
    Rosenberg DR, Lewis DA. Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: a tyrosine hydroxylase immunohistochemical study. Biol Psychiatry. 1994;36(4):272–7.Google Scholar
  26. 26.
    Woo TU, Pucak ML, Kye CH, et al. Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience. 1997;80(4):1149–58.Google Scholar
  27. 27.
    Belue RC, Howlett AC, Westlake TM, et al. The ontogeny of cannabinoid receptors in the brain of postnatal and aging rats. Neurotoxicol Teratol. 1995;17(1):25–30.Google Scholar
  28. 28.
    Lane SD, Cherek DR, Tcheremissine OV, et al. Response perseveration and adaptation in heavy marijuana-smoking adolescents. Addict Behav. 2007;32(5):977–90.Google Scholar
  29. 29.
    Harvey MA, Sellman JD, Porter RJ, et al. The relationship between non-acute adolescent cannabis use and cognition. Drug Alcohol Rev. 2007;26(3):309–19.Google Scholar
  30. 30.
    Medina KL, Nagel BJ, Park A, et al. Depressive symptoms in adolescents: associations with white matter volume and marijuana use. J Child Psychol Psychiatry. 2007;48(6):592–600.Google Scholar
  31. 31.
    Pope HG Jr., Gruber AJ, Hudson JI, et al. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depend. 2003;69(3):303–10.Google Scholar
  32. 32.
    Tapert SF, Granholm E, Leedy NG, et al. Substance use and withdrawal: neuropsychological functioning over 8 years in youth. J Int Neuropsychol Soc. 2002;8(7):873–83.Google Scholar
  33. 33.
    Fried PA, Watkinson B, Gray R. Neurocognitive consequences of marihuana: a comparison with pre-drug performance. Neurotoxicol Teratol. 2005;27(2):231–9.Google Scholar
  34. 34.
    Ehrenreich H, Rinn T, Kunert HJ, et al. Specific attentional dysfunction in adults following early start of cannabis use. Psychopharmacology (Berl). 1999;142(3):295–301.Google Scholar
  35. 35.
    Block RI, O’Leary DS, Ehrhardt JC, et al. Effects of frequent marijuana use on brain tissue volume and composition. Neuroreport. 2000;11(3):491–6.Google Scholar
  36. 36.
    Yucel M, Solowij N, Respondek C, et al. Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry. 2008;65(6):694–701.Google Scholar
  37. 37.
    Wilson W, Mathew R, Turkington T, et al. Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J Addict Dis. 2000;19(1):1–22.Google Scholar
  38. 38.
    Arnone D, Barrick TR, Chengappa S, et al. Corpus callosum damage in heavy marijuana use: preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. Neuroimage. 2008;41(3):1067–74.Google Scholar
  39. 39.
    Bava S, Frank LR, McQueeny T, et al. Altered white matter microstructure in adolescent substance users. Psychiatry Res. 2009;173(3):228–37.Google Scholar
  40. 40.
    Ashtari M, Cervellione K, Cottone J, et al. Diffusion abnormalities in adolescents and young adults with a history of heavy cannabis use. J Psychiatr Res. 2009;43(3):189–204.Google Scholar
  41. 41.
    Chang L, Yakupov R, Cloak C, et al. Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain. 2006;129(Pt 5):1096–112.Google Scholar
  42. 42.
    Abdullaev Y, Posner MI, Nunnally R, et al. Functional MRI evidence for inefficient attentional control in adolescent chronic cannabis abuse. Behav Brain Res. 2010;215(1):45–57.Google Scholar
  43. 43.
    Becker B, Wagner D, Gouzoulis-Mayfrank E, et al. The impact of early-onset cannabis use on functional brain correlates of working memory. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):837–45.Google Scholar
  44. 44.
    Schweinsburg AD, Schweinsburg BC, Cheung EH, et al. fMRI response to spatial working memory in adolescents with comorbid marijuana and alcohol use disorders. Drug Alcohol Depend. 2005;79(2):201–10.Google Scholar
  45. 45.
    Ashtari M, Avants B, Cyckowski L, et al. Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res. 2011;45(8):1055–66.Google Scholar
  46. 46.
    Schweinsburg AD, Schweinsburg BC, Medina KL, et al. The influence of recency of use on fMRI response during spatial working memory in adolescent marijuana users. J Psychoactive Drugs. 2010;42(3):401–12.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adriana Sampaio
    • 1
  • Ana Raquel Mesquita
    • 1
  • Óscar Filipe Gonçalves
    • 1
    • 2
    • 3
  1. 1.Laboratory of Neuropsychophysiology, School of PsychologyUniversity of MinhoBragaPortugal
  2. 2.Spaulding Neuromodulation Center, Department of Physical Medicine & RehabilitationSpaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical SchoolCharlestownUSA
  3. 3.Applied Psychology, Bouvé College of Health SciencesNortheastern UniversityBostonUSA

Personalised recommendations