Skip to main content

Abstract

Heart failure (HF) is a frequent condition occurring in patients with diabetes (DM). Although DM is strongly associated with coronary artery disease (CAD), many cases of left ventricular dysfunction occur in subjects with nonobstructive CAD. In DM subjects, several factors including hyperglycemia (glucotoxicity), free fatty acid oxidation (lipotoxicity), and inflammation contribute to define the phenotype known as diabetic cardiomyopathy (DCM), characterized by cardiac fibrosis, left ventricular hypertrophy, diastolic dysfunction, and increased filling pressures. Prevalence of diastolic heart failure (DHF) is high among patients with DCM, and accounts for increased morbidity and mortality. Clinically, patients with DCM may present with peripheral edema, dyspnea, low-normal ejection fraction, increased vena cava diameter, and mild, diffuse CAD. This chapter describes molecular mechanisms, pathophysiology, and clinical implications of DCM. A better understanding of the causes underlying this condition may contribute to reduce the risk of HF in people with DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038

    Article  CAS  PubMed  Google Scholar 

  2. Shindler DM, Kostis JB, Yusuf S, Quinones MA, Pitt B, Stewart D et al (1996) Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am J Cardiol 77:1017–1020

    Article  CAS  PubMed  Google Scholar 

  3. Ryden L, Armstrong PW, Cleland JG, Horowitz JD, Massie BM, Packer M et al (2000) Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial. Eur Heart J 21:1967–1978

    Article  CAS  PubMed  Google Scholar 

  4. Ghose JC, Chakraborty S, Mondal M, Bhandari B (1993) Effect of vasodilator therapy on mortality in chronic congestive heart failure. J Assoc Physicians India 41:269–271

    CAS  PubMed  Google Scholar 

  5. Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L (2005) Insulin resistance and risk of congestive heart failure. JAMA 294:334–341

    Article  CAS  PubMed  Google Scholar 

  6. Hofsten DE, Logstrup BB, Moller JE, Pellikka PA, Egstrup K (2009) Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis. JACC Cardiovasc Imaging 2:592–599

    Article  PubMed  Google Scholar 

  7. Hardin NJ (1996) The myocardial and vascular pathology of diabetic cardiomyopathy. Coron Artery Dis 7:99–108

    Article  CAS  PubMed  Google Scholar 

  8. Bugger H, Bode C (2015) The vulnerable myocardium. Diabetic cardiomyopathy. Hamostaseologie 35:17–24

    Article  CAS  PubMed  Google Scholar 

  9. Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G (2013) Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes 4:177–189

    PubMed Central  PubMed  Google Scholar 

  10. Teupe C, Rosak C (2012) Diabetic cardiomyopathy and diastolic heart failure – difficulties with relaxation. Diabetes Res Clin Pract 97:185–194

    Article  CAS  PubMed  Google Scholar 

  11. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  CAS  PubMed  Google Scholar 

  12. Falcao-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344

    Article  CAS  PubMed  Google Scholar 

  13. Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Hooi Ewe S et al (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544

    Article  PubMed  Google Scholar 

  14. Ussher JR (2014) The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy. Expert Rev Cardiovasc Ther 12:345–358

    Article  CAS  PubMed  Google Scholar 

  15. van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P (2011) Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 92:10–18

    Article  PubMed  Google Scholar 

  16. Schilling JD, Mann DL (2012) Diabetic cardiomyopathy: bench to bedside. Heart Fail Clin 8:619–631

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lee TI, Kao YH, Chen YC, Huang JH, Hsiao FC, Chen YJ (2013) Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res Clin Pract 100:330–339

    Article  CAS  PubMed  Google Scholar 

  18. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A et al (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 100:1226–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ilkun O, Boudina S (2013) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 19:4806–4817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Connelly KA, Kelly DJ, Zhang Y, Prior DL, Advani A, Cox AJ et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137

    Article  CAS  PubMed  Google Scholar 

  21. Giles TD, Ouyang J, Kerut EK, Given MB, Allen GE, McIlwain EF et al (1998) Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. Am J Physiol 274:H295–H307

    CAS  PubMed  Google Scholar 

  22. Li Z, Abdullah CS, Jin ZQ (2014) Inhibition of PKC-theta preserves cardiac function and reduces fibrosis in streptozotocin-induced diabetic cardiomyopathy. Br J Pharmacol 171:2913–2924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Soetikno V, Sari FR, Sukumaran V, Lakshmanan AP, Mito S, Harima M et al (2012) Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC-MAPK signaling pathway. Eur J Pharm Sci 47:604–614

    Article  CAS  PubMed  Google Scholar 

  24. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A 94:9320–9325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1:181–193

    Article  CAS  PubMed  Google Scholar 

  26. Chiu J, Farhangkhoee H, Xu BY, Chen S, George B, Chakrabarti S (2008) PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol 45:385–393

    Article  CAS  PubMed  Google Scholar 

  27. Acar E, Ural D, Bildirici U, Sahin T, Yilmaz I (2011) Diabetic cardiomyopathy. Anadolu Kardiyol Derg 11:732–737

    PubMed  Google Scholar 

  28. Dong B, Yu QT, Dai HY, Gao YY, Zhou ZL, Zhang L et al (2012) Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J Am Coll Cardiol 59:739–747

    Article  CAS  PubMed  Google Scholar 

  29. Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M et al (2012) Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest 122:1109–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M (2010) Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 298:H833–H843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paneni, F., Cosentino, F. (2015). Diabetic Cardiomyopathy. In: Diabetes and Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17762-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17762-5_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17761-8

  • Online ISBN: 978-3-319-17762-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics