Skip to main content

Environment, Epigenetic Changes, and Cardiovascular Damage

  • Chapter

Abstract

Environment may significantly interfere with molecular processes eliciting cardiac and vascular disease in patients with impaired glucose tolerance or diabetes (DM). Emerging evidence indicates that epigenetic changes, including chromatin remodeling and microRNAs may contribute to explain gene-environment interaction and subsequent dysregulation of key oxidant and inflammatory pathways involved in hyperglycemic stress, maladaptive insulin signaling, and vascular dysfunction. Of note, such gene-activating events occurring in obese or DM subjects may be transmitted to the offspring and anticipate disease phenotypes already in young, normoweight individuals. Interestingly, recent evidence suggest that reprogramming epigenetic networks may contribute to restore vascular homeostasis in this setting. In this chapter, we provide an overview of emerging mechanisms underpinning cardiovascular damage in patients with obesity and diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Skinner MK (2014) Environment, epigenetics and reproduction. Mol Cell Endocrinol 398:1–3

    Article  CAS  PubMed  Google Scholar 

  2. Steves CJ, Spector TD, Jackson SH (2012) Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing 41:581–586

    Article  PubMed  Google Scholar 

  3. Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105:105–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Skinner MK, Guerrero-Bosagna C (2009) Environmental signals and transgenerational epigenetics. Epigenomics 1:111–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bouret S, Levin BE, Ozanne SE (2015) Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev 95:47–82

    Article  CAS  PubMed  Google Scholar 

  6. Napoli C, Crudele V, Soricelli A, Al-Omran M, Vitale N, Infante T et al (2012) Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation 125:2363–2373

    Article  PubMed  Google Scholar 

  7. Keating ST, El-Osta A (2015) Epigenetics and Metabolism. Circ Res 116:715–736

    Article  CAS  PubMed  Google Scholar 

  8. Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123:2145–2156

    Article  PubMed Central  PubMed  Google Scholar 

  9. Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harb Perspect Biol 7:a019364

    Article  PubMed  Google Scholar 

  10. Paneni F, Costantino S, Volpe M, Luscher TF, Cosentino F (2013) Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis 230:191–197

    Article  CAS  PubMed  Google Scholar 

  11. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG et al (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Keating ST, El-Osta A (2012) Chromatin modifications associated with diabetes. J Cardiovasc Transl Res 5:399–412

    Article  PubMed  Google Scholar 

  13. Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D et al (2008) Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 283:26771–26781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S et al (2015) Adverse epigenetic signatures by histone methyltransferase set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet 8:150–158

    Article  CAS  PubMed  Google Scholar 

  15. Li SL, Reddy MA, Cai Q, Meng L, Yuan H, Lanting L et al (2006) Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes 55:2611–2619

    Article  CAS  PubMed  Google Scholar 

  16. Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M et al (2012) Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res 111:278–289

    Article  CAS  PubMed  Google Scholar 

  17. Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107:1403–1413

    Article  CAS  PubMed  Google Scholar 

  18. Paneni F, Volpe M, Luscher TF, Cosentino F (2013) SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 62:1800–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Corbi G, Conti V, Scapagnini G, Filippelli A, Ferrara N (2012) Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci 4:768–778

    Article  Google Scholar 

  20. Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S et al (2011) Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109:639–648

    Article  CAS  PubMed  Google Scholar 

  21. Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279:18091–18097

    Article  CAS  PubMed  Google Scholar 

  22. Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57:3189–3198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R (2008) Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA 105:9047–9052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 21:134–144

    Article  PubMed  Google Scholar 

  25. Li CC, Cropley JE, Cowley MJ, Preiss T, Martin DI, Suter CM (2011) A sustained dietary change increases epigenetic variation in isogenic mice. PLoS Genet 7:e1001380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Li J, Huang J, Li JS, Chen H, Huang K, Zheng L (2012) Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 56:900–907

    Article  CAS  PubMed  Google Scholar 

  27. Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150:4999–5009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Olsen AS, Sarras MP Jr, Leontovich A, Intine RV (2012) Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 61:485–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Brasset E, Chambeyron S (2013) Epigenetics and transgenerational inheritance. Genome Biol 14:306

    PubMed Central  PubMed  Google Scholar 

  30. Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70:141–145

    Article  PubMed  Google Scholar 

  31. Shantikumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93:583–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817

    Article  CAS  PubMed  Google Scholar 

  33. Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF et al (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6:e22839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36:181–188

    Article  PubMed  Google Scholar 

  35. Li Y, Song YH, Li F, Yang T, Lu YW, Geng YJ (2009) MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 381:81–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R et al (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123:282–291

    Article  CAS  PubMed  Google Scholar 

  37. Mocharla P, Briand S, Giannotti G, Dorries C, Jakob P, Paneni F et al (2013) AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121:226–236

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paneni, F., Cosentino, F. (2015). Environment, Epigenetic Changes, and Cardiovascular Damage. In: Diabetes and Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17762-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17762-5_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17761-8

  • Online ISBN: 978-3-319-17762-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics