Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2134))

  • 683 Accesses

Abstract

In this chapter we begin by teaching the reader all the necessary basics of rectifiable curves and absolutely continuous functions. We then introduce the class of geometric action functionals to which our theory can be applied (and in particular the subclass of Hamiltonian geometric actions), give several examples of geometric actions, and prove a lower semi-continuity property for them. Finally, we define the notion of a “drift” of an action, as a generalization of the drift vector field entering the Wentzell-Freidlin action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The key argument for this can be found at the end of the proof of Proposition 3.25.

  2. 2.

    This work also proposed an algorithm, called the geometric minimum action method (gMAM ), for numerically computing minimizing curves of such geometric actions.

  3. 3.

    At the beginning of [10], additional smoothness assumptions on H were made, but they do not enter the proofs of these representations.

  4. 4.

    Probabilists will find some comments in Appendix A.6.

References

  1. Arnold, V.I.: Ordinary Differential Equations, 1st edn. Universitext. Springer, Berlin/Heidelberg/New York (1992)

    Google Scholar 

  2. Bao, D.D.W., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)

    Google Scholar 

  3. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. International Series in Pure and Applied Mathematics. McGraw-Hill, New York/Toronto/London (1955)

    Google Scholar 

  4. Day, M.V.: Regularity of boundary quasi-potentials for planar systems. Appl. Math. Optim. 30(1), 79–101 (1994)

    Article  Google Scholar 

  5. Day, M.V., Darden, T.A.: Some regularity results on the Ventcel-Freidlin quasi-potential function. Appl. Math. Optim. 13(1), 259–282 (1985)

    Article  Google Scholar 

  6. E, W., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

    Google Scholar 

  7. E, W., Ren, W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57(5), 637–656 (2004)

    Google Scholar 

  8. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, vol. 260, 2nd edn. Springer, New York (1998)

    Google Scholar 

  9. Heymann, M.: The geometric minimum action method: A least action principle on the space of curves. Ph.D. thesis, New York University (2007)

    Google Scholar 

  10. Heymann, M., Vanden-Eijnden, E.: The geometric minimum action method: A least action principle on the space of curves. Commun. Pure Appl. Math. 61(8), 1052–1117 (2008)

    Article  Google Scholar 

  11. Heymann, M., Vanden-Eijnden, E.: Pathways of maximum likelihood for rare events in nonequilibrium systems: Application to nucleation in the presence of shear. Phys. Rev. Lett. 100, 140601 (2008)

    Article  Google Scholar 

  12. Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6(3), 223–240 (1978)

    Article  Google Scholar 

  13. Lima, E.L.: The Jordan-Brouwer separation theorem for smooth hypersurfaces. Am. Math. Mon. 95(1), 39–42 (1988)

    Article  Google Scholar 

  14. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 3rd edn. Springer, New York (2001)

    Google Scholar 

  15. Roma, D.M., O’Flanagan, R.A., Ruckenstein, A.E., Sengupta, A.M., Mukhopadhyay, R.: Optimal path to epigenetic switching. Phys. Rev. E 71, 011902 (2005)

    Article  Google Scholar 

  16. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis: Queues, Communications, and Computing. Stochastic Modeling Series. Chapman & Hall, London/Glasgow (1995)

    Google Scholar 

  17. Simon, B.: Semiclassical analysis of low lying eigenvalues, II. Tunneling. Ann. Math., 2nd Ser. 120(1), 89–118 (1984)

    Google Scholar 

  18. Stein, E.M., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis. Princeton University Press, Princeton/Oxford (2005)

    Google Scholar 

  19. Vanden-Eijnden, E., Heymann, M.: The geometric minimum action method for computing minimum energy paths. J. Chem. Phys. 128(6), 061103 (2008)

    Article  Google Scholar 

  20. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, 2nd edn. Springer, Berlin/Heidelberg/New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heymann, M. (2015). Geometric Action Functionals. In: Minimum Action Curves in Degenerate Finsler Metrics. Lecture Notes in Mathematics, vol 2134. Springer, Cham. https://doi.org/10.1007/978-3-319-17753-3_2

Download citation

Publish with us

Policies and ethics