Skip to main content

Critical Heat Flux

  • Chapter

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The critical heat flux (CHF) condition is characterized by a sharp reduction of the local heat transfer coefficient as a result of the replacement of liquid by vapor adjacent to the heat transfer surface [1]. The CHF condition in flow boiling can be of different nature [1–5]. At low vapor quality, it is associated with subcooled boiling or saturated boiling and high heat. However, at medium or high quality, it is the dryout and there is no liquid film on the tube wall. Usually this is in case of annular flow and due to surface wave instabilities or entrainment and vaporization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford Science Publications, New York, 1–33, 131–182, 183–213, 325–374

    Google Scholar 

  2. Hewitt GF (1998) Handbook of heat transfer, boiling, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  3. Nukiyama S (1966) The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf 9:1419–1433

    Google Scholar 

  4. Katto Y (1994) Critical heat flux. Int J Multiph Flow 20(1):53–90

    MATH  Google Scholar 

  5. Tong LS, Tang YS (1997) Boiling heat transfer and two-phase flow, 2nd edn. Taylor & Francis, Bristol

    Google Scholar 

  6. Chang SH, Baek WP (2003) Understanding predicting and enhancing critical heat flux. In: The 10th international topical meeting on nuclear reactor thermo-hydraulics (NURETH-10), Seoul

    Google Scholar 

  7. Zuber N (1959) Hydrodynamic aspects of boiling heat transfer. PhD thesis, Research Laboratory, Los Angeles and Ramo-Wooldridge Corporation, University of California, Los Angeles

    Google Scholar 

  8. Lienhard JH, Dhir VK (1973) Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes. NASA CR-2270, contract no. NGL 18-001-035

    Google Scholar 

  9. Yan Y, Lin T (1998) Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int J Heat Mass Transf 41:4183–4194

    Google Scholar 

  10. Haramura Y, Katto Y (1983) A new hydrodynamic model of critical heat flux applicable to both pool and forced convection boiling on submerged bodies in saturated liquids. Int J Heat Mass Transf 26:389–399

    MATH  Google Scholar 

  11. Dhir VK, Liaw SP (1989) Framework for a unified model for nucleate and transition pool boiling. J Heat Transf 111(3):739–746

    Google Scholar 

  12. Liaw SP, Dhir VK (1989) Void fraction measurements during saturated pool boiling of water on partially wetted vertical surfaces. Trans ASME J Heat Transf 111(3):731–738

    Google Scholar 

  13. Bergles AE (1992) What is the real mechanism of CHF in pool boiling. In: Dhir VK, Bergles AE (eds) Pool and external flow boiling. ASME, New York, pp 165–170

    Google Scholar 

  14. Kandlikar SG (2001) A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J Heat Transf 123(6):1071–1079

    Google Scholar 

  15. Ha SJ, No HC (1998) A dry-spot model of critical heat flux in pool and forced convention boiling. Int J Heat Mass Transf 41(2):303–311

    Google Scholar 

  16. Ha SJ, No HC (2000) A dry-spot model of critical heat flux applicable to both pool boiling and sub-cooled forced convention boiling. Int J Heat Mass Transf 43:241–250

    MATH  Google Scholar 

  17. Kandlikar SG (2001) Critical heat flux in sub-cooled flow boiling—an assessment of current understandings and future directions for research. Multiph Sci Technol 13(3):207–232

    Google Scholar 

  18. Celata GP, Mariani A (1999) CHF and post-CHF (post-dry-out) heat transfer, Chapter 17. In: Kandlikar SG, Shoji M, Dhir VK (eds) Handbook of phase change, boiling and condensation. Taylor and Francis, New York, pp 443–493

    Google Scholar 

  19. Bergles AE, Kandlikar SG (2005) On the nature of critical heat flux in micro-channels. J Heat Transf 127:101–107

    Google Scholar 

  20. Kim YH, Kim SJ, Noh SW, Suh KY et al (2003) Critical heat flux in narrow gap in two-dimensional slices under uniform heating condition. In: Transactions of the 17th international conference on structural mechanics in reactor technology (SMIRT 17), Prague, Czech Republic

    Google Scholar 

  21. Bar-Cohen A, Geisler K, Rahim E (2008) Pool and flow boiling in narrow gaps-application to 3D chip stacks. In: Proceedings of fifth European thermal-sciences conference

    Google Scholar 

  22. Aoki S, Inoue A, Aritomi M, Sakamoto Y (1982) Experimental study within on the boiling phenomena a narrow gap. Int J Heat Mass Transf 25(7):985–990

    Google Scholar 

  23. Kim JJ, Kim YH, Kim SJ et al (2004) Boiling visualization and critical heat flux phenomena in narrow rectangular gap. In: Fourth Japan-Korea symposium on nuclear thermal hydraulics and safety

    Google Scholar 

  24. Revellin R, Thome JR (2009) Critical heat flux during boiling in micro-channels: a parametric study. Heat Transf Eng 30(7):556–563

    Google Scholar 

  25. Ghiaasiaan SM, Abdul-Khalik SI (2001) Two phase flow in micro-channels. Adv Heat Transf 34:145–254

    Google Scholar 

  26. Das PK, Chakraborty S, Bhaduri S (2012) Critical heat flux during flow boiling in mini and microchannel—a state of the art review. Front Heat Mass Transf 3:013008

    Google Scholar 

  27. Roday AP, Jensen MK (2007) Experimental investigation of the CHF condition during flow boiling of water in micro-tubes. In: ASME-JSME thermal engineering summer heat transfer conference, Vancouver, Canada

    Google Scholar 

  28. Roday AP, Tasciuc TB, Jensen MK (2008) The critical heat flux condition with water in a uniformly heated micro-tube. J Heat Transf 130:1–9

    Google Scholar 

  29. Roday AP, Jensen MK (2009) Study of critical heat flux condition with water and R-123 during flow boiling in micro-tubes. Part I: experimental results and discussion of parametric effects. Int J Heat Mass Transf 52:3235–3249

    Google Scholar 

  30. Roday AP, Jensen MK (2009) Study of the critical heat flux condition with water and R-123 during flow boiling in micro-tubes. Part II: comparison of data with correlations and establishment of a new sub-cooled CHF correlation. Int J Heat Mass Transf 52(13–14):3250–3256

    Google Scholar 

  31. Bower MB, Mudawar I (1994) High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks. Int J Heat Mass Transf 37(2):321–332

    Google Scholar 

  32. Mauro AW, Thome JR, Toto D, Vanoli GP (2010) Saturated critical heat flux in a multi-micro-channel heat sink fed by a split flow system. Exp Therm Fluid Sci 34:81–92

    Google Scholar 

  33. Park JE, Thome JR (2010) Critical heat flux in multi-micro-channel copper elements with low pressure refrigerants. Int J Heat Mass Transf 53:110–122

    Google Scholar 

  34. Vandervort CL, Bergles AE, Jensen MK (1994) An experimental study of critical heat flux in very high heat flux sub-cooled boiling. Int J Heat Mass Transf 37(Suppl 1):161–173

    Google Scholar 

  35. Bergles AE (1962) Sub-cooled burnout in tubes of small diameter. ASME paper 63-WA-182

    Google Scholar 

  36. Stoddard RM, Blasick AM, Ghiaasiaan SM, Abdel-Khalik SI, Jeter SM, Dowling MF (2002) Onset of flow instability and critical heat flux in thin horizontal annuli. Exp Therm Fluid Sci 26:1–14

    Google Scholar 

  37. Katto Y (1978) A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes. Int J Heat Mass Transf 21:1527–1542

    Google Scholar 

  38. Qu W, Mudawar I (2004) Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. Int J Heat Mass Transf 47:2045–2059

    Google Scholar 

  39. Qi SL, Zhang P, Wang RJ et al (2007) Flow boiling of liquid nitrogen in micro-tubes: part II: heat transfer characteristics and critical heat flux. Int J Heat Mass Transf 50:5017–5030

    MATH  Google Scholar 

  40. Wojtan L, Revellin R, Thome JR (2006) Investigation of saturated critical heat flux in a single, uniformly heated micro-channel. Exp Therm Fluid Sci 30:765–774

    Google Scholar 

  41. Wu Z, Li W, Ye S (2011) Correlations for saturated critical heat flux in micro-channels. Int J Heat Mass Transf 54:379–389

    MATH  Google Scholar 

  42. Katto Y, Ohno H (1984) An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes. Int J Heat Mass Transf 27:1641–1648

    Google Scholar 

  43. Groeneveld DC (1986) The onset of dry sheath condition—a new definition of dry-out. Nucl Eng Des 92:135–140

    MathSciNet  Google Scholar 

  44. Yu W, France DM, Wambsganss MW, Hull JR (2002) Two-phase pressure drop boiling heat transfer and critical heat flux to water in a small-diameter horizontal tube. Int J Multiph Flow 28:927–941

    MATH  Google Scholar 

  45. Shah MM (1987) Improved general correlation for critical heat flux during up flow in uniformly heated vertical tubes. Int J Heat Fluid Flow 8:326–335

    Google Scholar 

  46. Tong LS (1968) Boundary-layer analysis of the flow boiling crisis. Int J Heat Mass Transf 11:1208–1211

    Google Scholar 

  47. Nariai H, Inasaka F, Shimuara T (1987) Critical heat flux of sub-cooled flow boiling in narrow tubes. In: ASME/JSME thermal engineering joint conference (1987), vol 5, pp 455–462

    Google Scholar 

  48. Celeta GP, Cumo M, Mariani A (1993) Burnout in highly sub-cooled water flow boiling in small diameter tubes. Int J Heat Mass Transf 36:1269–1285

    Google Scholar 

  49. Hall DD, Mudawar I (2000) Critical heat flux (CHF) for water flow in tubes. Part II: sub-cooled CHF correlations. Int J Heat Mass Transf 43:2605–2640

    Google Scholar 

  50. Ong CL, Thome JR (2011) Macro-to-microchannel transition in two-phase flow: part 2—flow boiling heat transfer and critical heat flux. Exp Therm Fluid Sci 35:873–886

    Google Scholar 

  51. Zhang W, Hibiki T, Mishima K, Mi Y (2006) Correlation of critical heat flux for flow boiling of water in mini-channels. Int J Heat Mass Transf 49:1058–1072

    Google Scholar 

  52. Kosar A, Peles Y (2007) Critical heat flux of R-123 in silicon-based microchannels. J Heat Transf 129:844–851

    Google Scholar 

  53. Qi SL, Zhang P, Wang RZ, Xu LX (2007) Flow boiling of liquid nitrogen in microtubes: part II: heat transfer characteristics and critical heat flux. Int J HeatMass Transf 50:5017–5030

    MATH  Google Scholar 

  54. Revellin R, Mishima K, Thome JR (2009) Status of prediction methods for critical heat fluxes in mini and microchannels. Int J Heat Fluid Flow 30:983–992

    Google Scholar 

  55. Chung JN, Chen T, Maroo SC (2011) A review of recent progress on nano/micro-scale nucleate boiling fundamentals. Front Heat Mass Transf 2:023004

    Google Scholar 

  56. Boure JA, Bergles AE, Tong LS (1973) Review of two phase flow instability. Nucl Eng Des 25:165–192

    Google Scholar 

  57. Fukuyama Y, Hirata M (1982) Boiling heat transfer characteristics with high mass flux and disappearance of CHF following to DNB. In: Proceedings of the 7th international heat and mass transfer conference, vol 4, pp 273–278

    Google Scholar 

  58. Hosaka S, Hirata M, Kasagi N (1990) Forced convective subcooled boiling heat transfer and CHF in small diameter tubes. In: Proceedings of the 9th international heat and mass transfer conference, vol 2, pp 129–134

    Google Scholar 

  59. Jiang L, Wong M, Zohar Y (2000) Phase change in microchannel heat sink under forced convection boiling. In: Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp 397–402

    Google Scholar 

  60. Yen T, Kasagi N, Suzuki Y (2003) Forced convective boiling heat transfer in micro-tubes at low mass and heat fluxes. Int J Multiph Flow 29:1771–1792

    MATH  Google Scholar 

  61. Bowers MB, Mudawar I (1994) High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks. Int J Heat Mass Transf 37(2):321–332

    Google Scholar 

  62. Kew P, Cornwell K (1997) Correlation for prediction of boiling heat transfer in small diameter channel. J Therm Eng 17:705–715

    Google Scholar 

  63. Roday AP, Borca T, Jensen MK (2008) The critical heat flux condition with water in a uniformly heated microtube. J Heat Transf 130:012901

    Google Scholar 

  64. Koşar A, Kuo CJ, Peles Y (2006) Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. J Heat Transf 128:251–260

    Google Scholar 

  65. Koşar A, Peles Y (2007) Critical heat flux of R-123 in silicon-based microchannels. J Heat Transf 129(7):844–851

    Google Scholar 

  66. Kuan WK, Kandlikar SG (2006) Critical heat flux measurement and model for refrigerant-123 under stabilized flow conditions in microchannels. In: Proceedings of IMECE, ASME international mechanical engineering Congress and exposition, Chicago, Illinois, USA, IMECE-13310, 5–10 November

    Google Scholar 

  67. Rostami AA, Hassan AY, Chia SL (2000) Conjugate heat transfer in microchannels. In: Heat transfer and transport phenomena in microsystems, Banff, Alberta, Canada, pp 121–128

    Google Scholar 

  68. Celata GP, Cumo M, Mariani A (1997) Geometrical effects on the subcooled flow boiling critical heat flux. Rev Gen Therm 36:807–814

    Google Scholar 

  69. Nariai H, Inasaka F, Uehara K (1988) Critical heat flux in narrow tubes with uniform heating. Trans Jpn Soc Mech Eng 54(502):1406–1410

    Google Scholar 

  70. Bergles AE, Rohsenow WM (1962) Forced convection surface-boiling heat transfer and burnout in tubes of small diameter. Contract AF 19 (604)-7344 report, Department of Mechanical Engineering, Massachusetts Institute of Technology

    Google Scholar 

  71. Roach GM Jr, Abdel-Khalik SI, Ghiaasiaan SM, Dowling MF, Jeter SM (1999) Low flow critical heat flux in heated microchannels. Nucl Sci Eng 13:411–425

    Google Scholar 

  72. Oh CH, Englert SB (1993) Critical heat flux for low flow boiling in vertical uniformly heated thin rectangular channels. Int J Heat Mass Transf 36(2):325–335

    Google Scholar 

  73. Lazarek GM, Black SH (1982) Evaporative heat transfer pressure drop and critical heat flux in a small vertical tube with R113. Int J Heat Mass Transf 25(7):945–960

    Google Scholar 

  74. Yu W, Wambsganss MW, Hull JR, France DM (2001) Critical heat flux and boiling heat transfer to water in a 3mm diameter horizontal tube. In: Proceedings of the 2001 vehicle thermal management systems conference, paper no. 2001-01-1768

    Google Scholar 

  75. Lezzi AM, Niro A, Beretta GP (1994) Experimental data on CHF for forced convection water boiling in long horizontal capillary tubes. In: Proceedings of the 10th international heat transfer conference, Rugby, vol 7, pp 491–496

    Google Scholar 

  76. Harirchian T, Garimella SV (2009) The critical role of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannel. Int J Multiph Flow 35:349–362

    Google Scholar 

  77. Harirchian T, Garimella SV (2009) The critical role of channel cross-sectional area in microchannel flow boiling heat transfer. Int J Multiph Flow 35:904–913

    Google Scholar 

  78. Kandlikar SG (2009) A scale analysis based theoretical force balance model for critical heat flux (CHF) during saturated flow boiling in microchannels and minichannels. In: Proceedings of ASME 2009 second micro/nanoscale heat and mass transfer international conference, Shanghai, China

    Google Scholar 

  79. Jacobi AM, Thome JR (2002) Heat transfer model for evaporation of elongated bubble flows in microchannels. J Heat Transf 124(6):1131–1136

    Google Scholar 

  80. Kandlikar SG (2010) Similarities and differences between flow boiling in microchannels and pool boiling. Heat Transf Eng 31(3):159–167

    Google Scholar 

  81. Revellin R, Thome JR (2008) A theoretical model for the prediction of the critical heat flux in heated microchannels. Int J Heat Mass Transf 51:1216–1225

    MATH  Google Scholar 

  82. Revellin R, Thome JR, Bejan A, Bonjour J (2009) Constructal tree—shaped microchannel networks for maximizing the saturated critical heat flux. Int J Therm Sci 48:342–352

    Google Scholar 

  83. Kosar A (2009) A model to predict saturated critical heat flux in minichannels and microchannels. Int J Therm Sci 48:261–270

    Google Scholar 

  84. Kuan WK, Kandlikar SG (2008) Experimental study and model on critical heat flux of refrigerants-123 and water in microchannels. J Heat Transf 130(3):1–5, 034503

    Google Scholar 

  85. Yen TH et al (2006) Visualization of convective boiling heat transfer in single microchannels with different shaped cross-sections. Int J Heat Mass Transf 49(21–22):3884–3894

    MATH  Google Scholar 

  86. Agostini B et al (2008) High heat flux flow boiling in silicon multi-microchannels—part III: saturated critical heat flux of R236fa and two-phase pressure drops. Int J Heat Mass Transf 51(21–22):5426–5442

    MATH  Google Scholar 

  87. Agostini B et al (2008) High heat flux flow boiling in silicon multi-microchannels—part I: heat transfer characteristics of refrigerant R236fa. Int J Heat MassTransf 51(21–22):5400–5414

    MATH  Google Scholar 

  88. Agostini B et al (2008) High heat flux flow boiling in silicon multi-microchannels—part II: heat transfer characteristics of refrigerant R245fa. Int J Heat MassTransf 51(21–22):5415–5425

    MATH  Google Scholar 

  89. Lee PC, Pan C (2008) On the eruptive boiling in silicon-based microchannels. Int J Heat Mass Transf 51(19–20):4841–4849

    MATH  Google Scholar 

  90. Bertsch SS, Groll EA, Garimella SV (2008) Refrigerant flow boiling heat transfer in parallel microchannels as a function of local vapor quality. Int J Heat Mass Transf 51(19–20):4775–4787

    MATH  Google Scholar 

  91. Lee PS, Garimella SV (2008) Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays. Int J Heat Mass Transf 51(3–4):789–806

    MATH  Google Scholar 

  92. Wang G, Cheng P (2009) Subcooled flow boiling and microbubble emission boiling phenomena in a partially heated microchannel. Int J Heat Mass Transf 52(1–2):79–91

    Google Scholar 

  93. Geisler KJL, Bar-Cohen A (2009) Confinement effects on nucleate boiling and critical heat flux in buoyancy-driven microchannels. Int J Heat Mass Transf 52(11–12):2427–2436

    Google Scholar 

  94. Yang ZL, Palm B, Sehgal BR (2002) Numerical simulation of bubbly two-phase flow in a narrow channel. Int J Heat Mass Transf 45(3):631–639

    MATH  Google Scholar 

  95. Mukherjee S, Mudawar I (2003) Smart pumpless loop for micro-channel electronic cooling using flat and enhanced surfaces. IEEE Trans Compon Pack Technol 26(1):99–109

    Google Scholar 

  96. Dupont V, Thome JR, Jacobi AM (2004) Heat transfer model for evaporation in microchannels, part II: comparison with the database. Int J Heat Mass Transf 47(14–16):3387–3401

    MATH  Google Scholar 

  97. Steinke ME, Kandlikar SG (2004) An experimental investigation of flow boiling characteristics of water in parallel microchannels. J Heat Transf 126(4):518–526

    Google Scholar 

  98. Kandlikar SG et al (2006) Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. J Heat Transf 128(4):389–396

    Google Scholar 

  99. Kosar A, Kuo CJ, Peles Y (2006) Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. J Heat Transf 128(3):251–260

    Google Scholar 

  100. Kuo CJ, Peles Y (2008) Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities. J Heat Transf 130(7):072402–072410

    Google Scholar 

  101. Kuo CJ, Peles Y (2009) Pressure effects on flow boiling instabilities in parallel microchannels. Int J Heat Mass Transf 52(1–2):271–280

    Google Scholar 

  102. Mukherjee A, Kandlikar SG (2009) The effect of inlet constriction on bubble growth during flow boiling in microchannels. Int J Heat Mass Transf 52(21–22):5204–5212

    MATH  Google Scholar 

  103. Zhang T et al (2010) Analysis and active control of pressure-drop flow instabilities in boiling microchannel systems. Int J Heat Mass Transf 53(11–12):2347–2360

    MATH  Google Scholar 

  104. Ajaev VS, Homsy GM (2001) Three-dimensional steady vapor bubbles in rectangular microchannels. J Colloid Interf Sci 244(1):180–189

    Google Scholar 

  105. Mukherjee A, Dhir VK (2004) Study of lateral merger of vapor bubbles during nucleate pool boiling. J Heat Transf 126(6):1023–1039

    Google Scholar 

  106. Mukherjee A, Kandlikar SG (2005) Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel. J Microfluid Nanofluid 1(2):137–145

    Google Scholar 

  107. Lee W, Son G (2008) Bubble dynamics and heat transfer during nucleate boiling in a microchannel. Numer Heat Transfer, Part A 53(10):1074–1090

    MathSciNet  Google Scholar 

  108. Suh Y, Lee W, Son G (2008) Bubble dynamics, flow, and heat transfer during flow boiling in parallel microchannels. Numer Heat Transfer, Part A 54(4):390–405

    Google Scholar 

  109. Kandlikar SG (2004) Heat transfer mechanisms during flow boiling in microchannels. J Heat Transf 126:8–16

    Google Scholar 

  110. Thome JR, Dupont V, Jacobi AM (2004) Heat transfer model for evaporation in microchannels, part I: presentation of the model. Int J Heat Mass Transf 47:3375–3385

    MATH  Google Scholar 

  111. Wang G, Cheng P, Bergles AE (2008) Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels. Int J Heat Mass Transf 51:2267–2281

    Google Scholar 

  112. Harirchian T, Garimella SV (2010) A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria. Int J Heat Mass Transf 53:2694–2702

    Google Scholar 

  113. Lee PC, Tseng FG, Pan C (2004) Bubble dynamics in microchannels, part I: single microchannel. Int J Heat Mass Transf 47:5575–5589

    Google Scholar 

  114. Koşar A, Kuo C-J, Peles Y (2005) Reduced pressure boiling heat transfer in rectangular microchannels with interconnected reentrant cavities. J Heat Transf 127:1106–1114

    Google Scholar 

  115. Roday AP (2007) Study of the critical heat flux condition in microtubes. PhD thesis, Rensselaer Polytechnic Institute, Troy

    Google Scholar 

  116. Hasaan I, Vaillancourt M, Pehlivan K (2005) Two phase flow regime transitions in microchannels, a comparative experimental study. Microscale Thermophys Eng 9:165–182

    Google Scholar 

  117. Revellin R, Thome JR (2007) A new type of diabatic flow pattern map for boiling heat transfer in microchannels. J Micromech Microeng 17:788–796

    Google Scholar 

  118. Roday AP, Jensen MK (2007) Experimental investigation of the CHF condition during flow boiling of water in microtubes, paper no. HT2007-32837. In: ASME-JSME thermal engineering summer heat transfer conference, Vancouver

    Google Scholar 

  119. Katto Y, Yokoya S (1984) Critical heat flux of liquid helium (I) in forced convection boiling. Int J Multiph Flow 10:401–403

    Google Scholar 

  120. Lin S, Kew PA, Cornwell K (2001) Flow boiling of refrigerant R141b in small tubes. Trans IChemE, Part A 79:417–424

    Google Scholar 

  121. Pettersen J (2004) Flow vaporization of CO2 in microchannel tubes. Exp Therm Fluid Sci 28:111–121

    Google Scholar 

  122. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Google Scholar 

  123. Kandlikar SG, Grande WJ (2004) Evaluation of single phase flow in microchannels for high flux chip cooling-thermohydraulic performance enhancement and fabrication technology. In: Proceedings of the 2nd international conference on microchannels and minichannels, ASME, Rochester

    Google Scholar 

  124. Kandlikar SG (2006) Effect of liquid–vapor phase distribution on the heat transfer mechanisms during flow boiling in minichannels and microchannels. Heat Transfer Eng 27(1):4–13

    Google Scholar 

  125. Daleas RS, Bergles AE (1965) Effects of upstream compressibility on subcooled critical heat flux, paper 65-HT-67, ASME, New York

    Google Scholar 

  126. Vafaei S, Wen D (2010) Critical heat flux of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. J Heat Transf 132(102404):1–7

    Google Scholar 

  127. Liao J, Mei R, Klausner JF (2004) The influence of the bulk liquid thermal boundary layer on saturated nucleate boiling. Int J Heat Fluid Flow 25(2):196–208

    Google Scholar 

  128. Tomar G, Biswas G, Sharma A, Agrawal A (2005) Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method. Phys Fluids 17(11):103–115

    Google Scholar 

  129. Genske P, Stephan K (2006) Numerical simulation of heat transfer during growth of single vapor bubbles in nucleate boiling. Int J Therm Sci 45(3):299–309

    Google Scholar 

  130. Son G, Dhir VK (2008) Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int J Heat Mass Transf 51(9–10):2566–2582

    MATH  Google Scholar 

  131. Wu JF, Dhir VK (2010) Numerical simulations of the dynamics and heat transfer associated with a single bubble in subcooled pool boiling. J Heat Transf 132(11):501–515

    Google Scholar 

  132. Banerjee D (2009) Flow boiling in microchannels prepared as a part of two-phase flows and heat transfer term project. Presented to Texas A&M University MEEN 624

    Google Scholar 

  133. Velichala A, Vijaykumar A, Eniket E, Rajarova N Flow boiling in microchannels, IIT Kanpur, India

    Google Scholar 

  134. Talukdar P Boiling and condensation, IIT Delhi

    Google Scholar 

  135. Callao CM (2010) Flow boiling heat transfer in single vertical channels of small diameter. Doctoral thesis, Division of Applied Thermodynamics and Refrigeration, Department of Energy Technology, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  136. Kandlikar SG (2009) Similarities and differences between flow boiling in microchannels and pool boiling. In: Proceedings of the second micro and nano flows conference, West London, keynote contribution

    Google Scholar 

  137. Kadam ST, Kumar R (2014) Twenty first century cooling solution: microchannel heat sinks. Int J Therm Sci 85:73–92

    Google Scholar 

  138. Dhir V, Kabarajith HS, Ding L (2007) Bubble dynamics and heat transfer during pool and flow boiling. Heat Transf Eng 28(7):608–624

    Google Scholar 

  139. Roday AP, Jensen MK (2009) A review of the critical heat flux condition in mini-and microchannels. J Mech Sci Technol 23:2529–2547

    Google Scholar 

  140. Steinke ME, Kandlikar SG (2003) Flow boiling and pressure drop in parallel microchannels. In: Proceedings of first international conference on microchannels and minichannels, Rochester, New York, 24–25 April, pp 567–579

    Google Scholar 

  141. Boyd RD (1985) Subcooled flow boiling critical heat flux and its application to fusion energy components—part 1: a review of fundamentals of CHF and related data base. Fusion Technol 7:7–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saha, S.K., Celata, G.P. (2015). Critical Heat Flux. In: Critical Heat Flux in Flow Boiling in Microchannels. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-17735-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17735-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17734-2

  • Online ISBN: 978-3-319-17735-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics