Finite Element Method for Plates/Shells

  • Maria Augusta Neto
  • Ana Amaro
  • Luis Roseiro
  • José Cirne
  • Rogério Leal


The development of finite element equations for the stress analysis of two dimensional structures subjected to external loads that are applied transversely to their 2-D geometrical plane will be presented in this chapter. The basic concepts, procedures and formulations can also be found in many existing textbooks [1–3]. The procedure followed in this chapter is to first develop the FE matrices for plate elements, and then the FE matrices for flat shell elements are obtained by superimposing the matrices for plate elements and those for 2D solid plane stress elements developed in Chap.  5. Whereas for general shell finite elements the displacement and the geometry interpolations are obtained by considering also the isoparametric concept.


Stiffness Matrix Shell Element Plate Element Rectangular Element Transverse Shear Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Reddy JN (1993) Finite element method. Wiley, New YorkGoogle Scholar
  2. 2.
    Bathe K-J (1996) Finite element procedures. Prentice Hall, Englewood CliffsGoogle Scholar
  3. 3.
    Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth-Heinemann, OxfordzbMATHGoogle Scholar
  4. 4.
    Liu GR, Quek SS (2003) The finite element method: a practical course. Butterworth-Heinemann, OxfordGoogle Scholar
  5. 5.
    Irons BM, Draper JK (1965) Inadequacy of nodal connections for analysis of plate bending. AIAA J 3(5):961CrossRefGoogle Scholar
  6. 6.
    Zienkiewicz OC, Cheung YK (1964) The finite element method for analysis of elastic isotropic and orthotropic slabs. Proc Inst Civ Eng 28:471–488CrossRefGoogle Scholar
  7. 7.
    Melosh RJ (1963) Structural analysis of solids. ASCE Struct J 4:205–223Google Scholar
  8. 8.
    Adini A (1961) Analysis of shell structures by the finite element method. University of California, BerkleyGoogle Scholar
  9. 9.
    Melosh RJ (1963) Bases for the derivation of matrices for the direct stiffness method. AIAA J 1:1631–1637CrossRefGoogle Scholar
  10. 10.
    Tocher JL, Kapur KK (1965) Discussion of ‘Basis for derivation of matrices for the direct stiffness method’. AIAA J 3:1215–1216CrossRefGoogle Scholar
  11. 11.
    Bogner FK, Fox RL, Schmidt LA Jr (1966) The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas. In: Proceedings of the conference on matrix methods in structural mechanics, WPAFB, Ohio, pp 397–444Google Scholar
  12. 12.
    Clough RW, Tocher JL (1966) Finite element stiffness matrices for the analysis of plate bending. In: First conference on matrix methods in structural mechanic, Air Force Institute of Technology, Dayton, pp 515–547Google Scholar
  13. 13.
    Dhatt G (1970) An efficient triangular shell element. AIAA J 8(11):2100–2102CrossRefGoogle Scholar
  14. 14.
    Stricklin JA, Haisler WE, Von Riesemann WA (1971) Self-correcting initial value formulations in nonlinear structural mechanics. AIAA J 9:2066–2067CrossRefGoogle Scholar
  15. 15.
    Batoz JL, Bathe K-J, Ho L-W (1980) A study of three-node triangular plate bending elements. Int J Numer Meth Engrg 15:1771–1812CrossRefzbMATHGoogle Scholar
  16. 16.
    Batoz JL (1982) An explicit formulation for an efficient triangular plate-bending element. Int J Numer Meth Engrg 18:1077–1089CrossRefzbMATHGoogle Scholar
  17. 17.
    Oñate E (1995) Cálculo de Estructuras por el Método de los Elementos Finitos. Ed. CIMNEGoogle Scholar
  18. 18.
    Reddy JN (1997) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca RatonzbMATHGoogle Scholar
  19. 19.
    Cantin G, Clough RW (1968) A curved, cylindrical shell, finite element. AIAA J 6:1057–1062CrossRefzbMATHGoogle Scholar
  20. 20.
    ADINA R & D I (2014) User’s manual. R & D Inc., BostonGoogle Scholar
  21. 21.
    Scordelis AC, Lo KS (1964) Computer analysis of cylindrical shells. J Am Concr Inst 61:539–560Google Scholar
  22. 22.
    Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79:21–70MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maria Augusta Neto
    • 1
  • Ana Amaro
    • 1
  • Luis Roseiro
    • 2
  • José Cirne
    • 3
  • Rogério Leal
    • 3
  1. 1.CEMUC - Centre for Mechanical EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Mechanical EngineeringPolytechnic Institute of CoimbraCoimbraPortugal
  3. 3.Department of Mechanical EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations