Compact Ultrafast Oscillators and High Performance Ultrafast Amplifiers Based on Ytterbium-Doped Fibers

  • J Limpert
  • T. Eidam
  • M. Baumgartl
  • F. Röser
  • M. Plötner
  • B. Ortaç
  • S. Nolte
  • A. Tünnermann
Part of the Springer Series in Optical Sciences book series (SSOS, volume 195)


This chapter reviews the fundamentals and achievements of ultrashort pulse generation and amplification in ytterbium-doped fibers. Compact and ultrastable passively mode-locked fiber oscillators represent an ideal seed source for high performance femtosecond fiber amplification systems, which have been scaled towards kW-level average power and pulse energies well above the mJ-level. These laser systems will have significant impact in numerous scientific and industrial applications.


Pulse Energy Stimulate Raman Scattering Photonic Crystal Fiber Stimulate Brillouin Scattering Master Oscillator Power Amplifier 


  1. 1.
    A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high power solid-state lasers. Appl. Phys. B 58, 365–372 (1994)CrossRefADSGoogle Scholar
  2. 2.
    W.B. Jones, L.M. Goldman, J.P. Chernoch, W.S. Martin, The mini-FPL—a face-pumped laser: concept and implementation. IEEE J. Quantum Electron. 8, 534 (1972)CrossRefADSGoogle Scholar
  3. 3.
    R. Paschotta, J. Nillson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33, 1049 (1997)CrossRefADSGoogle Scholar
  4. 4.
    E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum, in Double-clad, offset core Nd fiber laser” in Optical Fiber Sensors, ed. by 1988 OSA Technical Digest Series, vol. 2 (Optical Society of America, Washington, D.C., 1988) postdeadline paper PD5Google Scholar
  5. 5.
  6. 6.
    G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, San Diego, 2007)Google Scholar
  7. 7.
    R.R. Alfano, The Supercontinuum Laser Source (Springer-Verlag, New York, 1989)CrossRefGoogle Scholar
  8. 8.
    J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)CrossRefADSGoogle Scholar
  9. 9.
    J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, Extended single-mode photonic crystal fiber lasers. Opt. Express 14, 2715–2720 (2006)CrossRefADSGoogle Scholar
  10. 10.
    C.D. Brooks, F. Di Teodoro, Multimegawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rodlike photonic crystal fiber amplifier. Appl. Phys. Lett. 89, 111119 (2006)CrossRefADSGoogle Scholar
  11. 11.
    T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, A. Tünnermann, Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. Opt. Express 13, 7621–7630 (2005)CrossRefADSGoogle Scholar
  12. 12.
    B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur, High-energy femtosecond Yb-doped dispersion compensation free fiber laser. Opt. Express 15, 10725–10732 (2007)CrossRefADSGoogle Scholar
  13. 13.
    J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, E. Mottay, High-power picosecond fiber amplifier based on nonlinear spectral compression. Opt. Lett. 30, 714–716 (2005)CrossRefADSGoogle Scholar
  14. 14.
    O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, A. Tünnermann, Millijoule pulse energy Q-switched short-length fiber laser. Opt. Lett. 32, 1551–1553 (2007)CrossRefADSGoogle Scholar
  15. 15.
    H.A. Haus, K. Tamura, L.E. Nelson, E.P. Ippen, Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment. IEEE J. Quantum Electron. 31, 591–598 (1995)CrossRefADSGoogle Scholar
  16. 16.
    K. Tamura, L.E. Nelson, H.A. Haus, E.P. Ippen, Soliton versus non-soliton operation of fibre ring lasers. Appl. Phys. Lett. 64, 149–151 (1994)CrossRefADSGoogle Scholar
  17. 17.
    K. Tamura, E. Ippen, H. Haus, L. Nelson, 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080–1082 (1993)CrossRefADSGoogle Scholar
  18. 18.
    G. Lenz, K. Tamura, H.A. Haus, E.P. Ippen, All-solid-state femtosecond source at 1.55 μm. Opt. Lett. 20, 1289–1291 (1995)CrossRefADSGoogle Scholar
  19. 19.
    L. Nelson, S. Fleischer, G. Lenz, E. Ippen, Efficient frequency doubling of a femtosecond fiber laser. Opt. Lett. 21, 1759–1761 (1996)CrossRefADSGoogle Scholar
  20. 20.
    L. Lefort, J. Price, D. Richardson, G. Spühler, R. Paschotta, U. Keller, A. Fry, J. Weston, Practical lownoise stretched-pulse Yb3+-doped fiber laser. Opt. Lett. 27, 291–293 (2002)CrossRefADSGoogle Scholar
  21. 21.
    B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, F. Sanchez, 90 fs generation from a stretched-pulse ytterbium doped fiber laser. Opt. Lett. 28, 1305 (2003)CrossRefADSGoogle Scholar
  22. 22.
    A. Albert, V. Couderc, L. Lefort, A. Barthélémy, High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design. IEEE Photon. Technol. Lett. 16, 416–418 (2004)CrossRefADSGoogle Scholar
  23. 23.
    F.Ö. Ilday, J. Buckley, H. Lim, F.W. Wise, W. Clark, Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser. Opt. Lett. 28, 1365 (2003)CrossRefADSGoogle Scholar
  24. 24.
    F.Ö. Ilday, J.R. Buckley, F.W. Wise, Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902 (2004)CrossRefADSGoogle Scholar
  25. 25.
    J. Buckley, F.Ö. Ilday, F.W. Wise, T. Sosnowski, Femtosecond fiber lasers with pulse energies above 10 nJ. Opt. Lett. 30, 1888 (2005)CrossRefADSGoogle Scholar
  26. 26.
  27. 27.
    T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, D. Ristau, Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems. Appl. Opt. 42, 6934–6938 (2003)CrossRefADSGoogle Scholar
  28. 28.
    M. Guina, N. Xiang, A. Vainionpää, O.G. Okhotnikov, T. Sajavaara, J. Keinonen, Self-starting stretched pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers. Opt. Lett. 26, 1809–1811 (2001)CrossRefADSGoogle Scholar
  29. 29.
    T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35, 94–96 (2010)CrossRefADSGoogle Scholar
  30. 30.
    F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D.N. Schimpf, J. Limpert, A. Tünnermann, Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. Opt. Lett. 32, 3495–3497 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J Limpert
    • 1
  • T. Eidam
    • 1
  • M. Baumgartl
    • 1
  • F. Röser
    • 2
  • M. Plötner
    • 3
  • B. Ortaç
    • 4
  • S. Nolte
    • 1
  • A. Tünnermann
    • 1
  1. 1.Institut Für Angewandte PhysikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  3. 3.Fraunhofer IOFJenaGermany
  4. 4.Bilkent UnivUNAM Inst Mat Sci & NanotechnolAnkaraTurkey

Personalised recommendations