Skip to main content

High Power Femtosecond Diode Lasers

  • Chapter
  • First Online:
Ultrashort Pulse Laser Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 195))

Abstract

We present a concept for a femtosecond laser based on a passively mode-locked semiconductor diode laser and a tapered amplifier. The absorption in the monolithically integrated quantum well absorber is controlled by a reverse voltage bias. Excellent mode-locking stability was observed without any rf modulation applied to gain current or absorber voltage. To avoid fast gain saturation and strong nonlinear pulse distortions within the tapered amplifier the technique of chirped pulse amplification is applied. In contrast to common chirped pulse amplification setups the oscillator emits pre-chirped pulses and a stretcher stage can be omitted. A pulse duration of 267 fs was achieved after compression in the colliding pulse mode-locking regime. For the first time we adapted this technique to the generation of tailored chirped pulses and investigated the influence of the collision point in an asymmetric two-section oscillator. This diode laser system is suited as a ultrafast pulse source for high power bulk or fiber amplifiers and paves a road to highly integrated laser systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACF:

Autocorrelation function

ASE:

Amplified spontaneous emission

COD:

Catastrophic optical damage

CPA:

Chirped pulse amplification

CPML:

Colliding pulse mode-locking

DBR:

Distributed bragg reflector

DFB:

Distributed feedback

GD:

Group-delay

GDD:

Group-delay dispersion

MOPA:

Master-oscillator power-amplifier

QW:

Quantum well

SCPML:

Self-colliding pulse mode-locking

SPM:

Self-phase modulation

TA:

Tapered amplifier

\(A_{M} (\tau )\) :

Measured autocorrelation function

\(A_{S} (\tau )\) :

Autocorrelation function of \(I_{S} (t)\)

\(E_{pulse}\) :

Pulse energy

\(f(t)\) :

Pulse shape function

\(F^{*}\) :

Pulse shape factor

\(I_{S} (t)\) :

Temporal intensity of a bandwidth-limited pulse with the spectrum S

λ :

Wavelength

\(\Delta \lambda\) :

Spectral bandwidth

\(M^{2}\) :

Beam-quality factor

n :

Refractive index

\(\nu_{rep}\) :

Repetition rate

ω :

Angular frequency

\(\omega_{inst}\) :

Instantaneous angular frequency

\(\omega_{0}\) :

Carrier frequency

P :

Power

\(P_{\hbox{max} }^{ase}\) :

Maximum ASE power at zero input

\(P_{av}\) :

Average power of a pulse train

\(P_{in}\) :

Optical input power

\(P_{out}\) :

Optical output power

\(P_{peak}\) :

Pulse peak power

\(P_{sat}\) :

Saturation power of a tapered amplifier

\(P_{\hbox{max} }^{sig}\) :

Maximum signal output power at gain saturation

\(\varphi (\omega )\) :

Spectral phase

\(\frac{\partial \varphi }{\partial \omega }\) :

Group-delay (GD)

\(\frac{{\partial^{2} \varphi }}{{\partial \omega^{2} }}\) :

Group-delay dispersion (GDD)

R :

Reflectivity

\(\Delta s\) :

Optical path length

\(S(\omega )\) :

Optical pulse spectrum

\(\Delta t\) :

Delay

τ :

Temporal delay

\(\tau_{p}\) :

Pulse duration (FWHM)

\(U_{abs}\) :

DC absorber voltage bias

References

  1. E. Sorokin, I. Sorokina, E. Wintner, Appl. Phys. B 72(1), 3 (2001)

    Article  ADS  Google Scholar 

  2. C.T.A. Brown, M.A. Cataluna, A.A. Lagatsky, E.U. Rafailov, M.B. Agate, C.G. Leburn, W. Sibbett, New J. Phys. 6 (2004)

    Google Scholar 

  3. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, Appl. Phys. B 69(1), 3 (1999)

    ADS  Google Scholar 

  4. J. Kleinbauer, R. Knappe, R. Wallenstein, Appl. Phys. B 80(3), 315 (2005)

    Article  ADS  Google Scholar 

  5. R.J. Levis, G.M. Menkir, H. Rabitz, Science 292, 709 (2001)

    Article  ADS  Google Scholar 

  6. T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  7. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J.G. de Abajo, W. Pfeiffe, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007)

    Article  ADS  Google Scholar 

  8. P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H.G. Muller, M. Büttiker, U. Keller, Science 322, 1525 (2008)

    Article  ADS  Google Scholar 

  9. F. Dausinger, F. Lichtner, H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004)

    Google Scholar 

  10. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B. Chichkov, Appl. Phys. A 77(2), 229 (2003)

    ADS  Google Scholar 

  11. J. König, S. Nolte, A. Tünnermann, Opt. Express 13(26), 10597 (2005)

    Article  Google Scholar 

  12. F. Ruebel, P. Haag, J.A. L’huillier, Appl. Phys. Lett. 92(1), 011122 (2008)

    Article  ADS  Google Scholar 

  13. W.R. Zipfel, R.M. Williams, W.W. Webb, Nat. Biotechnol. 21(11), 1369 (2003)

    Article  Google Scholar 

  14. A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81(8), 1015 (2005)

    Article  ADS  Google Scholar 

  15. J.P. van der Ziel, W.T. Tsang, R.A. Logan, R.M. Mikulyak, W.M. Augustyniak, Appl. Phys. Lett. 39(7), 525 (1981)

    Article  ADS  Google Scholar 

  16. P.J. Delfyett, L.T. Florez, N. Stoffel, T. Gmitter, N.C. Andreadakis, Y. Silberberg, J.P. Heritage, G.A. Alphonse, IEEE J. Quantum Electron. 28(10), 2203 (1992)

    Article  ADS  Google Scholar 

  17. P.J. Delfyett, A. Dienes, J.P. Heritage, M.Y. Hong, Y.H. Chang, Appl. Phys. B 58(3), 183 (1994)

    Article  ADS  Google Scholar 

  18. J. Yu, M. Schell, M. Schulze, D. Bimberg, Appl. Phys. Lett. 65(19), 2395 (1994)

    Article  ADS  Google Scholar 

  19. K.A. Williams, M.G. Thompson, I.H. White, New J. Phys. 6, 179 (2004)

    Google Scholar 

  20. K. Kim, S. Lee, P.J. Delfyett, Opt. Express 13(12), 4600 (2005)

    Article  ADS  Google Scholar 

  21. T. Schlauch, M. Li, M. Hofmann, A. Klehr, G. Erbert, G. Tränkle, Electron. Lett. 44(11) (2008)

    Google Scholar 

  22. P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, G. Erbert, Opt. Express 17(13), 10820 (2009)

    Article  ADS  Google Scholar 

  23. T. Ulm, A. Klehr, G. Erbert, F. Harth, J.A. L’huiller, Appl. Phys. B 99(3), 409 (2010)

    Article  ADS  Google Scholar 

  24. T. Ulm, F. Harth, A. Klehr, G. Erbert, J. L’huillier, Proc. SPIE, Semicond. Lasers Laser Dyn. V 8432, 84320Y (2012)

    Google Scholar 

  25. F. Harth, T. Ulm, M. Lührmann, R. Knappe, A. Klehr, T. Hoffmann, G. Erbert, J.A. L’huillier, Opt. Exp. 20(7), 7002 (2012)

    Google Scholar 

  26. R. Diehl, High-Power Diode Lasers. Topics in Applied Physics (Springer, Berlin, 2000)

    Book  Google Scholar 

  27. P. Vasil’ev, Ultrafast Diode Lasers (Artech House Inc, Norwood, 1995)

    Google Scholar 

  28. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

    Google Scholar 

  29. O. Svelto, Principles of Lasers, 4th edn. (Plenum Press, New York, 1998)

    Book  Google Scholar 

  30. T. Suhara, Semiconductor Laser Fundamentals (Marcel Dekker, New York, 2004)

    Book  Google Scholar 

  31. A. Yariv, M. Nakamura, IEEE J. Quantum Electron. 13(4), 233 (1977)

    Article  ADS  Google Scholar 

  32. A. Othonos, J. Appl. Phys. 83(4), 1789 (1998)

    Article  ADS  Google Scholar 

  33. C.H. Henry, R.A. Logan, K.A. Bertness, J. Appl. Phys. 52(7), 4457 (1981)

    Article  ADS  Google Scholar 

  34. T. Ulm, H. Fuchs, J.A. L’huillier, A. Klehr, B. Sumpf, E. Gehrig, Opt. Commun. 281(8), 2160 (2007)

    Article  ADS  Google Scholar 

  35. A. Mecozzi, J. Mørk, J. Opt. Soc. Am. B 14(4), 761 (1997)

    Article  ADS  Google Scholar 

  36. G.P. Agrawal, N.A. Olsson, IEEE J. Quantum Electron. 25(11), 2297 (1989)

    Article  ADS  Google Scholar 

  37. E. Gehrig, O. Hess, A. Volland, G. Jennemann, I. Fischer, W. Elsäßer, J. Opt. Soc. Am. B 21(9), 1638 (2004)

    Article  ADS  Google Scholar 

  38. W.W. Chow, H.C. Schneider, W. Koch, C.H. Chang, L. Chrostowski, C.J. Chang-Hasnain, IEEE J. Quantum Electron. 38(4), 402 (2002)

    Article  ADS  Google Scholar 

  39. S. Backus, C.G. Durfee, M.M. Murnane, H.C. Kapteyn, Rev. Sci. Instrum. 69(3), 1207 (1998)

    Article  ADS  Google Scholar 

  40. G. Cerullo, S.D. Silvestri, Rev. Sci. Instrum. 74(1), 1 (2003)

    Article  ADS  Google Scholar 

  41. A. Galvanauskas, P.A. Krug, D. Harter, Opt. Lett. 21(14), 1049 (1996)

    Article  ADS  Google Scholar 

  42. A. Galvanauskas, A. Hariharan, D. Harter, M.A. Arbore, M.M. Fejer, Opt. Lett. 23(3), 210 (1998)

    Article  ADS  Google Scholar 

  43. R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, A. Stabinis, Appl. Phys. B 79(6), 693 (2004)

    Article  ADS  Google Scholar 

  44. A.M. Weiner, Prog. Quantum Electron. 19(3), 161 (1995)

    Article  ADS  Google Scholar 

  45. A.M. Weiner, Rev. Sci. Instrum. 71(5), 1929 (2000)

    Article  ADS  Google Scholar 

  46. G. Steinmeyer, Appl. Phys. A 79(7), 1663 (2004)

    Article  ADS  Google Scholar 

  47. A. Mar, R. Helkey, J. Bowers, D. Mehuys, D. Welch, I.E.E.E. Photon, Technol. Lett. 6(9), 1067 (1994)

    Article  Google Scholar 

  48. A.M. Fox, D.A.B. Miller, G. Livescu, J.E. Cunningham, W.Y. Jan, IEEE J. Quantum Electron. 27(10), 2281 (1991)

    Article  ADS  Google Scholar 

  49. D.A.B. Miller, D.S. Chemla, T.C. Dames, A. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. B 32(2), 1043 (1985)

    Article  ADS  Google Scholar 

  50. J.N. Walpole, Opt. Quantum Electron. 28, 623 (1996)

    Article  Google Scholar 

  51. C. Fiebig, G. Blume, C. Kaspari, D. Feise, J. Fricke, M. Matalla, W. John, H. Wenzel, K. Paschke, G. Erbert, Electron. Lett. 44(21), 1253 (2009)

    Article  Google Scholar 

  52. J.C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edn. (Academic Press (Elsevier), Amsterdam, 2006)

    Google Scholar 

  53. O.E. Martinez, J. Opt. Soc. Am. B 3(7), 929 (1986)

    Article  ADS  Google Scholar 

  54. O.E. Martinez, IEEE J. Quantum Electron. 24(12), 2530 (1998)

    Article  ADS  Google Scholar 

  55. A. Pietrzak, H. Wenzel, P. Crump, F. Bugge, J. Fricke, M. Spreemann, G. Erbert, G. Tränkle, 48(5), 568 (2012)

    Google Scholar 

  56. M. Ziegler, M. Hempel, H.E. Larsen, J.W. Tomm, P.E. Andersen, S. Clausen, S.N. Elliott, T. Elsaesser, Appl. Phys. Lett. 97

    Google Scholar 

  57. U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J.A. der Au, IEEE J. Sel. Top. Quantum Electron. 2(3), 435 (1996)

    Article  Google Scholar 

  58. R. Paschotta, U. Keller, Appl. Phys. B 73(7), 653 (2001)

    Article  ADS  Google Scholar 

  59. U. Keller, Nature 424, 831 (2003)

    Article  ADS  Google Scholar 

  60. F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D.H. Sutter, J. Puustinen, M. Guina, Appl. Phys. B 106(3), 605 (2012)

    Article  ADS  Google Scholar 

  61. D.J. Derickson, R.J. Helkey, A. Mar, J.R. Karin, J.G. Wasserbauer, J.E. Bowers, IEEE J. Quantum Electron. 28(10), 2186 (1992)

    Article  ADS  Google Scholar 

  62. M.A. Cataluna, Y. Ding, D.I. Nikitichev, K.A. Fedorova, E.U. Rafailov, IEEE J. Sel. Top. Quantum Electron. 17(5), 1302–2011 (2011)

    Article  Google Scholar 

  63. R. Scollo, H.J. Lohe, F. Robin, D. Erni, E. Gini, H. Jäckel, IEEE J. Quantum Electron. 45(4), 322 (2009)

    Article  ADS  Google Scholar 

  64. G. Tandoi, C.N. Ironside, J.H. Marsh, A.C. Bryce, IEEE J. Quantum Electron. 48(3), 318 (2012)

    Article  ADS  Google Scholar 

  65. T. Xu, M. Rossetti, P. Bardella, I. Montrosset, IEEE J. Quantum Electron. 48(9), 1193 (2012)

    Article  ADS  Google Scholar 

  66. A.V. Uskov, J.R. Karin, R. Nagarajan, J.E. Bowers, IEEE J. Sel. Top. Quantum 1(2), 552 (1995)

    Article  Google Scholar 

  67. P.J. Delfyett, C.H. Lee, G.A. Alphonsse, J.C. Connolly, Appl. Phys. Lett. 57(10), 971 (1990)

    Article  ADS  Google Scholar 

  68. Y.K. Chen, M.C. Wu, T. Tanbun-Ek, R.A. Logan, M.A. Chin, Appl. Phys. Lett. 58(12), 1253 (1991)

    Article  ADS  Google Scholar 

  69. Y.K. Chen, M.C. Wu, IEEE J. Quantum Electron. 28(10), 2176 (1992)

    Article  ADS  Google Scholar 

  70. J.F. Martins-Filho, E.A. Avrutin, C.N. Ironside, J.S. Roberts, IEEE J. Sel. Top. Quantum 1(2), 539 (1995)

    Article  Google Scholar 

  71. M.C. Wu, Y.K. Chen, T. Tanbun-Ek, R.A. Logan, M.A. Chin, G. Raybon, Appl. Phys. Lett. 57(8), 759 (1990)

    Article  ADS  Google Scholar 

  72. R.S. Grant, W. Sibbett, Appl. Phys. Lett. 58(11), 1119 (1991)

    Article  ADS  Google Scholar 

  73. J.A. Cavaillès, D.A.B. Miller, J.E. Cunningham, P.L.K. Wa, A. Miller, Appl. Phys. Lett. 61(4), 426 (1992)

    Article  ADS  Google Scholar 

  74. K. Hall, G. Lenz, A. Darwish, E. Ippen, Opt. Commun. 111, 589 (1994)

    Article  ADS  Google Scholar 

  75. E. Gehrig, D. Woll, M.A. Tremont, A. Robertson, R. Wallenstein, O. Hess, J. Opt. Soc. Am. B 17(8), 1452 (2000)

    Article  ADS  Google Scholar 

  76. D.C. Hutchings, M. Sheik-Bahae, D.J. Hagan, E.W. van Stryland, Opt. Quantum Electron. 24(1), 1 (1992)

    Article  Google Scholar 

  77. N.A. Olsson, G.P. Agrawal, Appl. Phys. Lett. 55(1), 13 (1989)

    Article  ADS  Google Scholar 

  78. A. Dienes, L.W. Carr, J. Appl. Phys. 69(3), 1766 (1991)

    Article  ADS  Google Scholar 

  79. M.Y. Hong, Y.H. Chang, A. Dienes, J.P. Heritage, P.J. Delfyett, IEEE J. Quantum Electron. 30(4), 1122 (1994)

    Article  ADS  Google Scholar 

  80. T. Ulm, F. Harth, H. Fuchs, J.A. L’huillier, R. Wallenstein, Appl. Phys. B 92(4), 481 (2008)

    Article  ADS  Google Scholar 

  81. E.B. Treacy, IEEE J. Quantum Electron. 5(9), 454 (1969)

    Article  ADS  Google Scholar 

  82. O.E. Martinez, IEEE J. Quantum Electron. 23(1), 59 (1987)

    Article  ADS  Google Scholar 

  83. H.A. Haus, IEEE J. Quantum Electron. 6(6), 1173 (2000)

    Article  Google Scholar 

  84. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, 1st edn. (Kluwer Academic Publishers, Norwell, 2000)

    Book  Google Scholar 

  85. G. Steinmeyer, J. Opt. A: Pure Appl. Opt. 5(1), R1 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank G. Erbert, A. Klehr and H. Wenzel (Ferdinand-Braun-Institut, Berlin) for providing the diode laser components and detailed informations on the structure of these devices as well as for many helpful discussions. We also thank R. Wallenstein for his continuous support and interest in our work. This work was funded by the German Ministry of Education and Research (project number 13 N 8568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Ulm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ulm, T., Harth, F., L’huillier, J. (2016). High Power Femtosecond Diode Lasers. In: Nolte, S., Schrempel, F., Dausinger, F. (eds) Ultrashort Pulse Laser Technology. Springer Series in Optical Sciences, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-17659-8_2

Download citation

Publish with us

Policies and ethics