Femtosecond Lentotomy: A Prospect for a Treatment to Regain the Accommodation Ability

  • Silvia Schumacher
  • Uwe Oberheide
Part of the Springer Series in Optical Sciences book series (SSOS, volume 195)


Presbyopia is the age-related loss of the accommodation of the lens of the eye which affects every person in the fifth decade of life. When presbyopia occurs, continuous growth of the lens fibers results in sclerosis of the lens tissue which is accompanied by a decrease in flexibility. Initially, this impairs the dynamic adaptation from far- to short-sightedness, until ultimately it fails completely. Currently, the conventional approach to compensate for the loss of accommodation is the use of reading glasses for short-sightedness. Although new surgical treatment methods have been developed, so far none of them allow a dynamic accommodation. An alternative approach is the restoration of the flexibility of the lens using a procedure based on the non-linear interaction of ultrafast laser pulses and tissue. The non-linearity of the photodisruption effect can be used to create micro-incisions inside the lens without opening the eye globe. These defined gliding planes thereby restore the lost flexibility. This treatment method, known as fs-lentotomy, enables regeneration of real dynamic accommodation. The fs-lentotomy treatment technique as well as the effect of laser irradiation on the tissue was evaluated. For the first time, various 3-D structures for gliding planes were successfully generated in experiments with human donor lenses of different ages. An average increase in anterior-posterior lens thickness of 100 μm accompanied by a decrease of equatorial lens diameter was observed as a direct consequence of fs-lentotomy. This is attributed to increased flexibility, as the force of the capsule bag deforms the lens tissue to a higher degree. Using the Fisher’s spinning test, a 16 % average flexibility increase was ascertained in human donor lenses. The control of the position of the gliding planes was found to be extremely important for safe and successful surgery. In addition to the experiments, calculations of the biomechanics during accommodation were carried out using the finite element method. This indicated that the achievable increase in flexibility of the lens depends on the applied cutting pattern. In vivo experiments with the lab prototype surgical instrument showed that laser incisions inside a rabbit eye lens caused no growing opacification (cataract ) over a 6 month follow-up period. However, the incisions were still detectable using Scheimpflug imaging and histopathological techniques, although the visibility of the incisions was declining. No distinctive features were observed upon evaluating thermal exposure of the rabbit retina during fs-lentotomy. It is expected that no damage will occur in the human retina, as exposure of the human retina is lower than exposure of the rabbit retina, due to the larger human eye bulb. The basic scientific investigations of fs-lentotomy show that it is possible to recover the flexibility of ex vivo human donor lenses. Consequently, the requirements for regaining a dynamic accommodation exist. Furthermore, no side effects were observed during the wound healing process and during a 6 months follow-up period. Based on the presented findings, it can be concluded that fs-lentotomy has the potential to become a well suited procedure for the treatment of presbyopia.


Laser Treatment Optical Power Crystalline Lens Cataract Formation Lens Capsule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Helmholtz, in Helmholtz’s Treatise on Physiological Optics, ed. by J. Southall. Mechanism of Accommodation (Dover, New York, 1909), pp. 143–173Google Scholar
  2. 2.
    A. Glasser, P.L. Kaufman, The mechanism of accommodation in primates. Ophthalmology 106, 863–872 (1999)CrossRefGoogle Scholar
  3. 3.
    E. Fincham, The mechanism of accommodation. Br. J. Ophthalmol. 8, 7–80 (1937)Google Scholar
  4. 4.
    K.R. Heys, S.L. Cram, R.J.W. Truscott, Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol. Vis. 10, 956–963 (2004)Google Scholar
  5. 5.
    H.A. Weeber, G. Eckert, W. Pechhold, R.G.L. van der Heijde, Stiffness gradient in the crystalline lens. Graefes Arch. Clin. Exp. Ophthalmol. 245, 1357–1366 (2007)CrossRefGoogle Scholar
  6. 6.
    D.A. Atchison, Accommodation and presbyopia. Ophthalmic Physiol. Opt. 15, 255–272 (1995)CrossRefGoogle Scholar
  7. 7.
    A. Glasser, M.C. Campbell, Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision. Res. 39, 1991–2015 (1999)CrossRefGoogle Scholar
  8. 8.
    S.A. Strenk, L.M. Strenk, S. Guo, Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters. J. Cataract Refract. Surg. 32, 1792–1798 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Glasser, M.C. Campbell, Presbyopia and the optical changes in the human crystalline lens with age. Vision. Res. 38, 209–229 (1998)CrossRefGoogle Scholar
  10. 10.
    R.A. Schachar, Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann. Ophthalmol. 24(445–7), 452 (1992)Google Scholar
  11. 11.
    G.U. Auffarth, H.B. Dick, Multifocal intraocular lenses: a review. Ophthalmologe 98, 127–137 (2001)CrossRefGoogle Scholar
  12. 12.
    D. Azar, M. Chang, C. Kloek, S. Zafar, K. Sippel, S. Jain, in Hyperopia and Presbyopia, eds. by K. Tsubota, B.B. Wachler, D. Azar, D. Koch. Monovision Refractive Surgery for Presbyopia (Marcel Dekker Inc., New York, 2003), pp. 189–208Google Scholar
  13. 13.
    M. Küchle, B. Seitz, A. Langenbucher, G.C. Gusek-Schneider, P. Martus, N.X. Nguyen, Group TEAILS. Comparison of 6-month results of implantation of the 1CU accommodative intraocular lens with conventional intraocular lenses. Ophthalmology 111, 318–324 (2004)CrossRefGoogle Scholar
  14. 14.
    G. Baïkoff, G. Matach, A. Fontaine, C. Ferraz, C. Spera, Correction of presbyopia with refractive multifocal phakic intraocular lenses. J. Cataract Refract. Surg. 30, 1454–1460 (2004)CrossRefGoogle Scholar
  15. 15.
    AcuFocus. AcuFocus ACI 7000 (2008), Accessed 31 July 2008
  16. 16.
    H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, W. Ertmer, Application of ultrashort laser pulses for intrastromal refractive surgery. Graefes Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000)CrossRefGoogle Scholar
  17. 17.
    P.S. Binder, One thousand consecutive IntraLase laser in situ keratomileusis flaps. J. Cataract Refract. Surg. 32, 962–969 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Stonecipher, T. Ignacio, M. Stonecipher, Advances in refractive surgery: microkeratome and femtosecond laser fl ap creation in relation to safety, effi cacy, predictability, and biomechanical stability. Curr. Opin. Ophthalmol. 17, 368–372 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schlötzer-Schrehardt, G. Naumann, Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decomposition. Am. J. Ophthalmol. 136, 769–772 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Holzer, T. Rabsilber, G. Auffarth, Penetrating keratoplasty using femtosecond laser. Am. J. Ophthalmol. 143, 524–526 (2007)CrossRefGoogle Scholar
  21. 21.
    D.V. Palanker, M.S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N.J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, W. Culbertson, Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med. 2(58), 58–85 (2010). doi:  10.1126/scitranslmed.3001305
  22. 22.
    N.J. Friedman, D.V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B.S. Seibel, J. Batlle, R. Feliz, J.H. Talamo, M.S. Blumenkranz, W.W. Culbertson, Femtosecond laser capsulotomy. J. Cataract Refract. Surg. 37(7), 1189–1198 (2011). doi:  10.1016/j.jcrs.2011.04.022
  23. 23.
    Z. Nagy, A. Takacs, T. Filkorn, M. Sarayba, Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J. Refract. Surg. 25(12), 1053–1060 (2009). doi:  10.3928/1081597X-20091117-04
  24. 24.
    R.I. Myers, R.R. Krueger, Novel approaches to correction of presbyopia with laser modification of the crystalline lens. J. Refract. Surg. 14, 136–139 (1998)Google Scholar
  25. 25.
    R.R. Krueger, X.K. Sun, J. Stroh, R. Myers, Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses. Ophthalmology 108, 2122–2129 (2001)CrossRefGoogle Scholar
  26. 26.
    A. Heisterkamp, T. Ripken, T. Mamon, W. Dommer, H. Welling, W. Ertmer, H. Lubatschowski, Nonlinear side effects of fs pulses inside corneal tissue during photodisruption. Appl. Phys. B Lasers O. 74, 419–425 (2002)CrossRefADSGoogle Scholar
  27. 27.
    A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B Lasers O. 81, 1015–1047 (2005)CrossRefADSGoogle Scholar
  28. 28.
    T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, H. Lubatschowski, fs-Laser induced elasticity changes to improve presbyopic lens accommodation. Graefes Arch. Clin. Exp. Ophthalmol. 246, 897–906 (2008)CrossRefGoogle Scholar
  29. 29.
    A. Heisterkamp, T. Mamom, O. Kermani, W. Drommer, H. Welling, W. Ertmer, H. Lubatschowski, Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye. Graefes Arch. Clin. Exp. Ophthalmol. 241, 511–517 (2003)CrossRefGoogle Scholar
  30. 30.
    R.F. Fisher, The force of contraction of the human ciliary muscle during accommodation. J. Physiol. 270, 51–74 (1977)CrossRefGoogle Scholar
  31. 31.
    R.F. Fisher, The elastic constants of the human lens. J. Physiol. 212, 147–180 (1971)CrossRefGoogle Scholar
  32. 32.
    A.M. Rosen, D.B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J.M. Parel, R.C. Augusteyn, In vitro dimensions and curvatures of human lenses. Vision. Res. 46, 1002–1009 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, H. Lubatschowski, Femtosecond laser induced flexibility change of human donor lenses. Vision. Res. 49, 1853–1859 (2009)CrossRefGoogle Scholar
  34. 34.
    R.A. Schachar, T. Huang, X. Huang, Mathematic proof of Schachar’s hypothesis of accommodation. Ann. Ophthalmol. 25, 5–9 (1993)Google Scholar
  35. 35.
    H.J. Burd, S.J. Judge, M.J. Flavell, Mechanics of accommodation of the human eye. Vision. Res. 39, 1591–1595 (1999)CrossRefGoogle Scholar
  36. 36.
    R.A. Schachar, A.J. Bax, Mechanism of human accommodation as analyzed by nonlinear finite element analysis. Compr. Ther. 27, 122–132 (2001)CrossRefGoogle Scholar
  37. 37.
    H.J. Burd, S.J. Judge, J.A. Cross, Numerical modelling of the accommodating lens. Vision. Res. 42, 2235–2251 (2002)CrossRefGoogle Scholar
  38. 38.
    E.A. Hermans, M. Dubbelman, G.L. van der Heijde, R.M. Heethaar, Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Vision. Res. 46, 3642–3650 (2006)CrossRefGoogle Scholar
  39. 39.
    Z. Liu, B.Wang, X. Xu, Y. Ju, J. Xie, C. Bao, in Engineering in Medicine and Biology Society IEEE-EMBS 2005. Finite Element modeling and simulating of accommodating human crystalline lens (2006) pp. 11–14Google Scholar
  40. 40.
    E. Hermans, M. Dubbelman, R. van der Heijde, R. Heethaar, The shape of the human lens nucleus with accommodation. J. Vis. 7, 1601–1610 (2007)CrossRefGoogle Scholar
  41. 41.
    H.A. Weeber, R.G.L. van der Heijde, On the relationship between lens stiffness and accommodative amplitude. Exp. Eye Res. 85, 602–607 (2007)CrossRefGoogle Scholar
  42. 42.
    E.A. Hermans, M. Dubbelman, G.L. van der Heijde, R.M. Heethaar, Change in the accommodative force on the lens of the human eye with age. Vision Res. 48, 119–126 (2008)CrossRefGoogle Scholar
  43. 43.
    R.F. Fisher, Elastic constants of the human lens capsule. J. Physiol. 201, 1–19 (1969)CrossRefGoogle Scholar
  44. 44.
    S. Krag, T. Olsen, T.T. Andreassen, Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest. Ophthalmol. Vis. Sci. 38, 357–363 (1997)Google Scholar
  45. 45.
    R.C. Augusteyn, M.A. Cake, Post-mortem water uptake by sheep lenses left in situ. Mol. Vis. 11, 749–751 (2005)Google Scholar
  46. 46.
    R.C. Augusteyn, A.M. Rosen, D. Borja, N.M. Ziebarth, J.M. Parel, Biometry of primate lenses during immersion in preservation media. Mol. Vis. 12, 740–747 (2006)Google Scholar
  47. 47.
    M. Dubbelman, G.L. Van der Heijde, H.A. Weeber, Change in shape of the aging human crystalline lens with accommodation. Vision Res. 45, 117–132 (2005)CrossRefGoogle Scholar
  48. 48.
    F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, J.M. Parel, Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses. Exp. Eye Res. 78, 39–51 (2004)CrossRefGoogle Scholar
  49. 49.
    P. Rosales, M. Dubbelman, S. Marcos, R. van der Heijde, Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J. Vis. 6, 1057–1067 (2006)CrossRefGoogle Scholar
  50. 50.
    A. Duane, Studies in monocular and binocular accommodation, with their clinical application. Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922)Google Scholar
  51. 51.
    R.R. Krueger, J. Kuszak, H. Lubatschowski, R.I. Myers, T. Ripken, A. Heisterkamp, First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis. J. Cataract Refract. Surg. 31, 2386–2394 (2005)CrossRefGoogle Scholar
  52. 52.
    G. Gerten, T. Ripken, P. Breitenfeld, R.R. Krueger, O. Kermani, H. Lubatschowski, U. Oberheide, In-vitro- und In-vivo-Untersuchungen zur Presbyopiebehandlung mit Femtosekundenlasern. Ophthalmologe 104, 40–46 (2007)CrossRefGoogle Scholar
  53. 53.
    S. Schumacher, M. Fromm, U. Oberheide, G. Gerten, A. Wegener, H. Lubatschowski, In vivo application and imaging of intralenticular femtosecond laser pulses for the restoration of accommodation. J. Refract. Surg. 24, 991–995 (2008)Google Scholar
  54. 54.
    A. Gwon, F. Fankhauser, C. Puliafito, L. Gruber, M. Berns, Focal laser photoablation of normal and cataractous lenses in rabbits: preliminary report. J. Cataract Refract. Surg. 21, 282–286 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laserzentrum Hannover e.V.HannoverGermany
  2. 2.Augenklinik Am NeumarktCologneGermany

Personalised recommendations