Abstract
A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly signals are integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes which determine the input-output function of any neuron are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin (synaptic contacts on distal dendrites) and summate at particular locations to influence action potential initiation. It became possible recently to carry out this type of measurement using high-resolution multisite recording of membrane potential changes with intracellular voltage-sensitive dyes. This chapter reviews the development and foundation of the method of voltage-sensitive dye recording from individual neurons. Presently, this approach allows monitoring membrane potential transients from all parts of the dendritic tree as well as from axon collaterals and individual dendritic spines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acker CD, Antic SD (2009) Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. J Neurophysiol 101(3):1524–1541, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2666409&tool=pmcentrez&rendertype=abstract. Accessed 13 Jan 2014
Acker CD, Yan P, Loew LM (2011) Single-voxel recording of voltage transients in dendritic spines. Biophys J 101(2):L11–L13, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3136788&tool=pmcentrez&rendertype=abstract. Accessed 26 Jan 2014
Antic S et al (2000) Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. J Physiol 527(Pt 1):55–69, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2270048&tool=pmcentrez&rendertype=abstract. Accessed 23 Nov 2014
Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82(3):1615–1621, http://www.ncbi.nlm.nih.gov/pubmed/10482775. Accessed 23 Nov 2014
Antic S, Zecević D (1995) Optical signals from neurons with internally applied voltage-sensitive dyes. J Neurosci 15(2):1392–1405, http://www.ncbi.nlm.nih.gov/pubmed/7869106. Accessed 29 Jul 2014
Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550(Pt 1):35–50, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2343022&tool=pmcentrez&rendertype=abstract. Accessed 23 Nov 2014
Araya R, Jiang J et al (2006a) The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103(47):17961–17966, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1693855&tool=pmcentrez&rendertype=abstract. Accessed 22 Jan 2014
Araya R, Eisenthal KB, Yuste R (2006b) Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci U S A 103(49):18799–18804, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1693742&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Bennett CB, Muschol M (2009) Large neurohypophysial varicosities amplify action potentials: results from numerical simulations. Endocrinology 150(6):2829–2836, http://www.ncbi.nlm.nih.gov/pubmed/19213831. Accessed 31 Jan 2014
Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science (New York, N Y) 310(5749):866–869, http://www.ncbi.nlm.nih.gov/pubmed/16272125. Accessed 24 Jan 2014
Bradley J et al (2009) Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J Neurosci 29(29):9197–9209, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2909666&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Canepari M et al (2010) Imaging inhibitory synaptic potentials using voltage sensitive dyes. Biophys J 98(9):2032–2040, http://dx.doi.org/10.1016/j.bpj.2010.01.024. Accessed 27 Jan 2014
Canepari M, Djurisic M, Zecevic D (2007) Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study. J Physiol 580(Pt. 2):463–484, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2075540&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Canepari M, Vogt K, Zecevic D (2008) Combining voltage and calcium imaging from neuronal dendrites. Cell Mol Neurobiol 28(8):1079–1093, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3143714&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Canepari M, Vogt KE (2008) Dendritic spike saturation of endogenous calcium buffer and induction of postsynaptic cerebellar LTP. PLoS One 3(12), e4011, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2603473&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Cao G et al (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154(4):904–913, http://www.ncbi.nlm.nih.gov/pubmed/23932121. Accessed 21 Jan 2014
Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46, http://www.ncbi.nlm.nih.gov/pubmed/18275283. Accessed 25 Jan 2014
Chanda B et al (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 8(11):1619–1626, http://www.ncbi.nlm.nih.gov/pubmed/16205716. Accessed 24 Jan 2014
Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14(12):515–519, http://www.ncbi.nlm.nih.gov/pubmed/1726341. Accessed 25 Nov 2014
Cohen LB et al (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol 19(1):1–36, http://www.ncbi.nlm.nih.gov/pubmed/4431037
Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol. Biochem Pharmacol 83:35–88
Cohen LB, Lesher S (1986) Optical monitoring of membrane potential: methods of multisite optical measurement. Soc Gen Physiol Ser 40:71–99, http://www.ncbi.nlm.nih.gov/pubmed/3520842. Accessed 13 Nov 2014
Daintry J (ed) (1984) Laser speckle and related phenomena, 2nd edn. Springer-Verlag, Berlin, http://www.ncbi.nlm.nih.gov/pubmed/18213052. Accessed 13 Nov 2014
Davila HV et al (1974) Changes in ANS and TNS fluorescence in giant axons from Loligo. J Membr Biol 15(1):29–46, http://www.ncbi.nlm.nih.gov/pubmed/4837989. Accessed 13 Nov 2014
Djurisic M et al (2008) Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. J Neurosci 28(15):4057–4068, http://www.ncbi.nlm.nih.gov/pubmed/18400905. Accessed 31 Jan 2014
Djurisic M et al (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24(30):6703–14, http://www.ncbi.nlm.nih.gov/pubmed/15282273. Accessed 31 Jan 2014
Dombeck DA et al (2006) Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol 94(5):3628–3636, http://www.ncbi.nlm.nih.gov/pubmed/16093337. Accessed 23 Nov 2014
Fink AE et al (2012) Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. PLoS One 7(8):e41434, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3411718&tool=pmcentrez&rendertype=abstract. Accessed 20 Jan 2014
Foust A et al (2010) Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci 30(20):6891–6902, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2990270&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Geiger RP et al (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1(4):2075–81, http://www.ncbi.nlm.nih.gov/pubmed/17487197. Accessed 24 Jan 2014
González JE, Tsien RY (1997) Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem Biol 4(4):269–277, http://www.ncbi.nlm.nih.gov/pubmed/9195864. Accessed 13 Nov 2014
González JE, Tsien RY (1995) Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys J 69(4):1272–1280, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1236357&tool=pmcentrez&rendertype=abstract
Grinvald A et al (1982) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J 39(3):301–308, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1328947&tool=pmcentrez&rendertype=abstract. Accessed 23 Nov 2014
Grinvald A et al (1987) Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys J 51(4):643–651, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1329936&tool=pmcentrez&rendertype=abstract. Accessed 13 Nov 2014
Grinvald A, Farber IC (1981) Optical recording of calcium action potentials from growth cones of cultured neurons with a laser microbeam. Science (New York, N Y) 212(4499):1164–1167, http://www.ncbi.nlm.nih.gov/pubmed/7233210. Accessed 13 Nov 2014
Grinvald A, Ross WN, Farber I (1981) Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons. Proc Natl Acad Sci U S A 78(5):3245–3249, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=319538&tool=pmcentrez&rendertype=abstract
Gulledge AT, Carnevale NT, Stuart GJ (2012) Electrical advantages of dendritic spines. PLoS One 7(4), e36007, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3332048&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Gupta RK et al (1981) Improvements in optical methods for measuring rapid changes in membrane potential. J Membr Biol 58(2):123–37, http://www.ncbi.nlm.nih.gov/pubmed/7218335. Accessed 13 Nov 2014
Harnett MT et al (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491(7425):599–602, http://dx.doi.org/10.1038/nature11554. Accessed 23 Jan 2014
Holthoff K, Zecevic D, Konnerth A (2010) Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons. J Physiol 588(Pt 7):1085–1096, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2852997&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Hu W et al (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12(8):996–1002, http://www.ncbi.nlm.nih.gov/pubmed/19633666. Accessed 31 Jan 2014
Iwasato T et al (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406(6797):726–731, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3558691&tool=pmcentrez&rendertype=abstract
Jack J, Noble D, Tsien R (1975) Electric current flow in excitable cells. Oxford Univ Press, London
Jin L et al (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3439164&tool=pmcentrez&rendertype=abstract. Accessed 20 Jan 2014
Kampa BM, Stuart GJ, Kampa M (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26(28):7424–32, http://www.ncbi.nlm.nih.gov/pubmed/16837590. Accessed 31 Jan 2014
Kerr JND, Denk W (2008) Imaging in vivo: watching the brain in action. Nature reviews. Neuroscience 9(3):195–205, http://www.ncbi.nlm.nih.gov/pubmed/18270513. Accessed 9 July 2014
Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13(2):413–22, http://www.ncbi.nlm.nih.gov/pubmed/8426220. Accessed 23 Aug 2014
Konnerth A, Obaid AL, Salzberg BM (1987) Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro. J Physiol 393:681–702, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1192418&tool=pmcentrez&rendertype=abstract. Accessed 13 Nov 2014
Kuhn B, Fromherz P, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87(1):631–639, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1304385&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Larkum ME et al (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science (New York, N Y) 325(5941):756–60, http://www.ncbi.nlm.nih.gov/pubmed/19661433. Accessed 28 Jan 2014
Loew LM (1982) Design and characterization of electrochromic membrane probes. J Biochem Biophys Methods 6(3):243–260, http://www.ncbi.nlm.nih.gov/pubmed/7130621
Matsukawa H et al (2003) Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J Neurosci 23(20):7677–7684, http://www.ncbi.nlm.nih.gov/pubmed/12930807
Milojkovic BA, Zhou W-L, Antic SD (2007) Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J Physiol 585(Pt 2):447–468, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2375496&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Moreaux L et al (2000) Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Optics Lett 25(5):320–2, http://www.ncbi.nlm.nih.gov/pubmed/18059867. Accessed 13 Nov 2014
Nevian T et al (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10(2):206–214, http://www.ncbi.nlm.nih.gov/pubmed/17206140. Accessed 31 Jan 2014
Noguchi J et al (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46(4):609–622, http://www.ncbi.nlm.nih.gov/pubmed/15944129. Accessed 24 Jan 2014
Nuriya M et al (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103(3):786–790, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1334676&tool=pmcentrez&rendertype=abstract
Obaid A, Shimizu H, Salzberg B (1982) Intracellular staining with potentiometric dyes: optical signals from identified leech neurons and their processes. Biol Bull 163:388
Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29(21):6897–6903, http://www.ncbi.nlm.nih.gov/pubmed/19474316. Accessed 31 Jan 2014
Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26(6):1854–1863, http://www.ncbi.nlm.nih.gov/pubmed/16467534. Accessed 31 Jan 2014
Parsons TD et al (1991) Long-term optical recording of patterns of electrical activity in ensembles of cultured Aplysia neurons. J Neurophysiol 66(1):316–333, http://www.ncbi.nlm.nih.gov/pubmed/1919674
Parsons TD et al (1989) Optical recording of the electrical activity of synaptically interacting Aplysia neurons in culture using potentiometric probes. Biophys J 56(1):213–221, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1280466&tool=pmcentrez&rendertype=abstract. Accessed 13 Nov 2014
Popovic MA et al (2011) The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. J Physiol 589(Pt 17):4167–4187, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3180577&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Rall W (1974) Cellular mechanisms subserving changes in neuronal activity. In: Woody E (ed) Brain info. University of California, Los Angeles
Roberts M (2004) Signals and systems: analysis using transform methods and MATLAB. McGraw-Hill Professional, New York
Rohr S, Salzberg BM (1994) Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures. J Gen Physiol 104(2):287–309, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2229204&tool=pmcentrez&rendertype=abstract
Ross WN, Krauthamer V (1984) Optical measurements of potential changes in axons and processes of neurons of a barnacle ganglion. J Neurosci 4(3):659–72, http://www.ncbi.nlm.nih.gov/pubmed/6707730 [Accessed November 13, 2014]
Rowan MJM, Tranquil E, Christie JM (2014) Distinct Kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 34(19):6611–6623, http://www.ncbi.nlm.nih.gov/pubmed/24806686. Accessed 12 Sept 2014
Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33(3):439–452, http://www.ncbi.nlm.nih.gov/pubmed/11832230
Sala C, Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94(1):141–88, http://www.ncbi.nlm.nih.gov/pubmed/24382885. Accessed 13 July 2014
Salzberg BM (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40:1281–1291
Salzberg B (1978) Optical signals from giant axon following perfusion or superfusion with potentiometric probes. Biol Bull 155:463–464
Segev I, Rall W (1998) Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci 21(11):453–60, http://www.ncbi.nlm.nih.gov/pubmed/9829684
Shoham D et al (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24(4):791–802, http://www.ncbi.nlm.nih.gov/pubmed/10624943
Shu Y et al (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441(7094):761–5, http://www.ncbi.nlm.nih.gov/pubmed/16625207. Accessed 21 Jan 2014
Shu Y et al (2007) Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 97(1):746–60, http://www.ncbi.nlm.nih.gov/pubmed/17093120. Accessed 31 Jan 2014
Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch 423(5-6):511–8, http://www.ncbi.nlm.nih.gov/pubmed/8351200. Accessed 12 Nov 2014
Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72, http://www.ncbi.nlm.nih.gov/pubmed/8107777. Accessed 12 Nov 2014
Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science (New York, N Y) 272(5262):716–719, http://www.ncbi.nlm.nih.gov/pubmed/8614831. Accessed 24 Aug 2014
Tønnesen J et al (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17(5):678–685, http://www.ncbi.nlm.nih.gov/pubmed/24657968. Accessed 10 July 2014
Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85(2):926–37, http://www.ncbi.nlm.nih.gov/pubmed/11160523
Waggoner A, Grinvald A (1977) Mechanisms of rapid optical changes of potential sensitive dyes. Ann N Y Acad Sci 303:217–242
Wang D et al (2010) Improved probes for hybrid voltage sensor imaging. Biophys J 99(7):2355–2365, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3042572&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Willadt S et al (2014) Combined optogenetics and voltage sensitive dye imaging at single cell resolution. Front Cell Neurosci 8:311, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4189389&tool=pmcentrez&rendertype=abstract. Accessed 20 Nov 2014
Wu J, Cohen L, Falk C (1999) Fast multisite optical measurement of membrane potential with two examples. In: Mason WT (ed) Fluorescence and luminescence probes for biological activity. Academic, London
Wuskell JP et al (2006) Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges. J Neurosci Methods 151(2):200–215, http://www.ncbi.nlm.nih.gov/pubmed/16253342. Accessed 31 Jan 2014
Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28(29):7260–7272, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2664555&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684, http://www.ncbi.nlm.nih.gov/pubmed/7791901
Zecević D (1996) Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381(6580):322–325, http://www.ncbi.nlm.nih.gov/pubmed/8692270. Accessed 29 July 2014
Zhou W-L et al (2008) Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons. Eur J Neurosci 27(4):923–936, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2715167&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Zhou W-L et al (2007) Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J Neurosci Methods 164(2):225–239, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2001318&tool=pmcentrez&rendertype=abstract. Accessed 31 Jan 2014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Popovic, M. et al. (2015). Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. In: Canepari, M., Zecevic, D., Bernus, O. (eds) Membrane Potential Imaging in the Nervous System and Heart. Advances in Experimental Medicine and Biology, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-319-17641-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-17641-3_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17640-6
Online ISBN: 978-3-319-17641-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)