Smart Cities and Resilience Plans: A Multi-Agent Based Simulation for Extreme Event Rescuing

Chapter
Part of the Public Administration and Information Technology book series (PAIT, volume 11)

Abstract

The concept of smart cities is one that relies on the use of new information and communication technologies in order to improve services that cities provide to their citizens. The resilience of a city is one of the services that it can provide to its citizens. Resilience is defined as its capacity to continue working normally by serving citizens when extreme events (EEs) occur. This chapter will propose a new framework based on multi-agent systems to help cities build simulation scenarios for rescuing citizens in the case of an EE. The main contribution of the framework will be a set of models, at different levels of abstraction, to reflect the organizational structure and policies within the simulation, which involves the integration of truly dynamic dimensions of this organization. The framework will also propose methods to go from one model to another (conceptual to simulation). This framework can be applied in different domains, such as smart cities, earthquakes and building fires.

Keywords

Extreme events City resilience Agent based simulation Multi-agent systems Organization Architecture Modelling Simulation 

List of Abbreviations

AA

Agent Artefact

ABDiSE

Agent-Based Disaster Simulation Environment

ABS

Agent Based Simulation

ACL

Agent Communication Language

AUML

Agent Unified Modeling Language

BDI

Believe, Desire, Intention

CAOM

Conceptual Agent Organizational Model

CROM

Conceptual Role Organizational Model

D4S2

Dynamic Discrete Disaster Decision Simulation System:

EE

Extreme Events

FACL

Form-based ACL

FIPA

Foundation of Intelligent Physical Agents

GIS

Geographical Information System

JADE

Java Agent Development Environment

MAS

Multi Agent System

MDA

Model Driven Architecture

MDD

Model Driven Development

MOON

Mu1tiagent-Oriented Office Network

ND

Natural disaster

OMT

Object Modeling Template

OPAM

Operational Agent Model

PIM

Platform Independent Model

PSM

Platform Specific Model

RTI

Real Time Infrastructure

SAMoSAB

Software Architecture for Modeling and Simulation Agent-Based

UEML

Unified Enterprise Modeling Language

References

  1. Antonio, L., D’Amours, S., & Frayret, J. M. (2008). “A methodological framework for the analysis of agent-based supply chain planning simulations”, SpringSim ’08: Proceedings of the 2008 spring simulation multiconference, Society for Computer Simulation International San Diego, CA, USA.Google Scholar
  2. Bellissard, L., Freyssinet, A., De Palma, N., Herrmann, M., & Lacourte, S. (1999). An agent platform for reliable asynchronous distributed programming. IEEE: FRANCE.Google Scholar
  3. Ben-Akiva, M. E., Koutsopoulos, H., & Mukundan, A. (1994). A dynamic traffic model system for ATMS/ATIS operation. Journal of Intelligent Transportation Systems, 2, 1–19. (MITTNS).Google Scholar
  4. Bordini, R., & Hubner, J. (2006). An overview of Jason. Association for Logic Programming Newsletter, 9(3), 1–6. http://www.cs.kuleuven.ac.be/~dtai/projects/ALP/newsletter/aug06/nav/articles/article5/fs.pdf.Google Scholar
  5. Bordini, R., Hubner, J., & Vieira, R. (2005). Jason and the golden fleece of agent-oriented programming. In R. Bordini, J. Hubner, & R. Vieira (Eds.), Multi-agent programming (pp. 3–37). New York: Springer.CrossRefGoogle Scholar
  6. Boulton, A., Brunn, S. D., & Devriendt, L. (2011). Cyberinfrastructures and “smart” world cities: Physical, human, and soft infrastructures. In P. Taylor, B. Derudder, M. Hoyler, & F. Witlox (Eds.), International handbook of globalization and world cities. Cheltenham: Edward Elgar.Google Scholar
  7. Cervera, E. (2005). A cross-platform agent-based implementation. IEEE.Google Scholar
  8. Chusho, T., & Fujiwara, K. (2000). A formbased agent communication language for enduser-initiative agent-based application development. IEEE.Google Scholar
  9. De Palma, A., Marchal, F., & Nesterov, Y. (1996). A modular system for dynamic traffic simulations. Transportation Research Record Journal of the Transportation Research Board, 1607, 178–184.CrossRefGoogle Scholar
  10. Defense Modeling and Simulation Office (DMSO). (1998). High Level Architecture Object Model Template, Version 1.3, dated 5 February 1998. Available online at the HLA Homepage.Google Scholar
  11. Erceau, J., & Ferber, J. (1991). ‘L’Intelligence Artificielle Distribuée’. La recherche, 22, 750–758.Google Scholar
  12. Ferber, J., & Perrot, J. F. (1995). Les Systèmes multi-agents, vers une intelligence collective. Paris: InerEditions.Google Scholar
  13. FIPA. (2002). FIPA Contract Net Interaction Protocol Specification, Foundation for Intelligent Physical Agents, www.fipa.org/specs/fipa00029/.
  14. France, R., Ghosh, S., Dinh-Trong, T., & Solberg, A. (2006). Model-driven development using UML 2.0: Promises and pitfalls. Computer, 39(2), 59–66.CrossRefGoogle Scholar
  15. Galea, E., & Gwynne, S. (2005). Principles and practices of evacuation modeling. London: CMS Press.Google Scholar
  16. Gaud, N., Galland, S., & Koukam, A. (2008). Towards a multilevel simulation approach based on holonic multi-agent. Published in the 10th International Conference on Computer Modeling and Simulation (EUROSIM/UKSiM”08), pp. 180–185, England.Google Scholar
  17. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovié, N., & Meijers, E. (2007). Smart cities: Ranking of European medium-sized cities. Vienna: Centre of Regional Science (SRF), Vienna University of Technology.Google Scholar
  18. Hall, R. E. (2000). The vision of a smart city. In Proceedings of the 2nd International Life Extension Technology Workshop, Paris, France, September 28.Google Scholar
  19. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams, P. (2010). Foundations for smarter cities. IBM Journal of Research and Development, 54(4), 1–16.CrossRefGoogle Scholar
  20. Helbing, D., & Treiber, M. (1999). Numerical simulation of macroscopic traffic equations. IMPACT of Computing in Science and Engineering, 1, 89–99.CrossRefGoogle Scholar
  21. Hollands, R. G. (2008). Will the real smart city please stand up? City, 12(3), 303–320.CrossRefGoogle Scholar
  22. Hsu, T. L., & Liu, J. W. S. (2012). An agent-based disaster simulation environment. RITMAN Workshop 2012, Taipei, Taiwan.Google Scholar
  23. Hübner, J. F, Sichman, J. S., & Boissier, O. (2007). Developing organised multi-agent systems using the Moise + Model: Programming issues at the system and agent levels. International Journal of Agent-Oriented Software Engineering, 1(3/4), 370–395Google Scholar
  24. Jain, S., & McLean, C. R. (2003). “A Framework for modeling and simulation of emergency response,” Proceedings of the 2003 Winter Simulation Conference, Dec. 7–10, New Orleans, Louisiana, pp. 1068–1076.Google Scholar
  25. Kao, Y.-C., & Chen, M.-S. (2010). An agent-based distributed smart machine tool service system. In 3CA 2010. IEEE.Google Scholar
  26. Kosonen, I., & Pursula, M. (1991). A simulation tool for traffic control planning. IEEE Conference Publication Number 320. Third international Conference on Road Traffic Control. Vol. 320, pp. 72–76.Google Scholar
  27. Kuligowski, E. D., & Peacock, R. D. (2006). A review of building evacuation models, Fire Research Division Building and Fire Research Laboratory.Google Scholar
  28. Labarthe, O., Espinasse, B., Ferrarini, A., & Montreuil, B. (2007). Toward a methodological framework for agent-based modeling and simulation of supply chains in a mass customization context. Simulation Modeling Practice and Theory International Journal (SIMPAT), 15(2), 113–136.CrossRefGoogle Scholar
  29. Lampert, R. (2002). Agent-based modeling as organizational and public policy simulators. Proceedings of the National Academy of Sciences of the United States of America, 99, 7195–196.CrossRefGoogle Scholar
  30. Li, X. (2010). An Agent/XML based information integration platform for process industry, in 2010 2nd International Conference on Computer Engineering and Technology. IEEE.Google Scholar
  31. Lin, A., & Maheshwari, P. (2005). Agent-based middleware for web service dynamic integration on peer-to-peer networks. In S. Zhang & R. Jharvis (Eds.), AI 2005: Advances in artificial intelligence (pp. 405–414). Berlin: Springer Verlag. (LNAI 3809).CrossRefGoogle Scholar
  32. Mcheick, H., & Qi, Y. (2011). Dependency of components in MVC distributed architecture. 24th IEEE (ccece’2011). May 8–11, Ontario, Canada.Google Scholar
  33. Montagna, S., Ricci, A., & Omicini, A. (2008). A & A for modeling and engineering simulations in systems biology. International Journal of Agent-Oriented Software Engineering, 2(2), 222–245.CrossRefGoogle Scholar
  34. Monteiro, T., Anciaux, D., Espinasse, B., Ferrarini, A., Labarthe, O., & Roy, D. (2008). The interest of agents for supply chain simulation. In C. Thierry, A. Thomas, & G. Bel (Eds.), Simulation for supply chain management. London: ISTE.Google Scholar
  35. Mukerji, J., & Miller, J. (2003). MDA: Model Driven Architecture Guide Version, www.omg.org/cgibin/doc?omg/03-06-01, Juin (2003).
  36. Mustapha, K., Tranvouez, E., Espinasse, B., & Ferrarini, A. (2010). An organization-oriented methodological framework for agent-based supply chain simulation. 4th International Conference on Research Challenges in Information Science, France.Google Scholar
  37. Odell, J., Parunak, H. V. D., & Bauer, B. (2001). Representing agent interaction protocols in UML, Proceedings of the First International Workshop on Agent-Oriented Software Engineering, CIANCARINI, P. & WOOLDRIDGE, M.Google Scholar
  38. Ounnar, F., Archimède, B., Pujo, P., & Charbonnaud, P. (2008). HLA Distributed Simulation Approaches for Supply Chain. In Hermès Science Europe Ltd (Ed.), Simulation for Supply Chain Management. (pp. 257–294). Wiley, ISTE.Google Scholar
  39. Piunti, M., Ricci, A., Boissier, O., & Hübner, J. F. (2009). Embodying organisations in multi-agent work environments, Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT’09. IEEE/WIC/ACM International Joint Conferences on 2, pp. 511–518.Google Scholar
  40. Rao, A. S. (1996). AgentSpeak(L): BDI Agents speak out in a Logical Computable Language. In W. Van de Velde & J. Perram (Eds.), Proceedings of the Seventh Workshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW’96), Jan. 22–25, Eindhoven, Netherlands, no. 1038 in LNAI, pp. 42–55. Springer-Verlag, London, U.K.Google Scholar
  41. Rao, A. S., & Gorgeff, M. P. (1991). Modeling rational agents within BDI-Architecture. In J. Allen et al. (Ed.), Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning. San Mateo, USA, Morgan Kaufmann, Pub, pp. 473–484.Google Scholar
  42. Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Upper Saddle River: Pearson Education.Google Scholar
  43. Serment, J., Espinasse, B., Tranvouez, E. (2007). An agent integration infrastructure for the development of environmental decision support systems based on simulation, AIS-CMS International modeling and simulation multiconference, Buenos Aires—Argentina. (ISBN 978-2-9520712-6-0).Google Scholar
  44. Steele, R., et al. (2005). XML-based mobile agents. In Proceedings of the International Conference on Information Technology: Coding and computing (ITCC’05). IEEE.Google Scholar
  45. Vangheluwe, H., et al. (2002). In Proceedings of the 2002 AI, Simulation and Planning in High Autonomy Systems Conference, AIS℉2002, (Lisboa, Portugal, April 2002). 9–20.Google Scholar
  46. Weber, E. P., & Khademian, A. M. (2008). Wicked problems, knowledge challenges, and collaborative capacity builders in network settings. Public Administration Review, 68(2), 334–349.CrossRefGoogle Scholar
  47. Wu, S., Shuman, L. J., Bidanda, B., Kelley, M., Sochats, K., & Balaban, C. (2007c). System implementation issues of dynamic discrete disaster decision simulation system (D4S2)—Phase I. In the Proceedings of the 2007 Winter Simulation Conference.Google Scholar
  48. Zambonelli, F., Jennings N., & Wooldridge, M. (2003). Developing multi-agent systems: The GAIA methodology. ACM Transactions on Software Engineering and Methodology, 12(3), 317–370.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Quebec in ChicoutimiChicoutimiCanada
  2. 2.Laval UniversityQuébecCanada

Personalised recommendations