Skip to main content

Total Synthesis of Carbohydrates

  • Chapter
  • First Online:
Modern Organocatalyzed Methods in Carbohydrate Chemistry

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 616 Accesses

Abstract

For a long time carbohydrates have stood out as a class of compounds very difficult to synthesize due to complexity of configuration and functionality. Delicate chemical operations and separation problems resulted in the so-called “sugarophobia”. But based on the dramatic development of organocatalysis over the last 15 years a large number of complicated carbohydrates is now accessible. Today a big manual of synthetic methods for total synthesis of carbohydrates exists. This pool of synthetic methods provides the tools to create defined and required configurations of hydroxyl groups during the total synthesis of the desired carbohydrates. Due to the nature of carbohydrates different aldol additions are the favoured transformations for the synthetic access to carbohydrates. Especially the extremely fast-growing manual of organo-catalyzed aldol reactions represents a promising tool for direct and biomimetic synthesis to unusual enantiomers of monosaccharides and to deoxy-, branched-, amino-, thio- and carbon-substituted carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jurzak J (1997) In: Hannesian S (ed) Preparative carbohydrate chemistry. Marcel Dekker, New York, pp 595–614

    Google Scholar 

  2. Zamojski A (1997) In: Hannesian S (ed) Preparative carbohydrate chemistry. Marcel Dekker, pp 615–636

    Google Scholar 

  3. Vogel P, Robina I (2007) In: Kamerling JP (ed) Comprehensive Glycosciences. Elsevier, pp 489–581

    Google Scholar 

  4. Vogel P (2001) In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience, vol 2. Springer, pp 1023–1174

    Google Scholar 

  5. Kirschning A, Jesberger M, Schöning KU (2001) Synthesis 4:507–540

    Google Scholar 

  6. Ernst B, Hart GW, Sinay P (2000) In: Carbohydrates in chemistry and biology. Wiley-VCH, Weinheim

    Google Scholar 

  7. Bode SE, Wolberg M, Müller M (2006) Synthesis 4:557–588

    Google Scholar 

  8. DeLederkremer RM, Marino C (2008) Adv Carb Chem Biochem 61:143–216

    Article  Google Scholar 

  9. Robina I, Carmona AT, Moreno-Vargas AJ, Moreno-Clavijo E (2011) Chimia 65:85–90

    Article  CAS  Google Scholar 

  10. Whalem LJ, Wong CH (2006) Aldrichim Acta 39:63–71

    CAS  Google Scholar 

  11. Fessner WD (2004) In: Mahrwald R (ed) Modern aldol reactions, vol 1. Wiley-VCH, Weinheim, pp 201–272

    Google Scholar 

  12. Franke D, Machajewski T, Hsu CC, Wong CH (2003) J Org Chem 68:6828–6831

    Article  CAS  Google Scholar 

  13. Fischer E, Tafel J (1887) Ber. 20:3384-3390

    Google Scholar 

  14. Meyerhof O, Lohmann K, Schuster P (1936) Biochem Zeitschr 286:319–335

    CAS  Google Scholar 

  15. Lehninger AL, Sice J, Jensen EV (1955) Biochim Biophys Acta 17:285–287

    Article  CAS  Google Scholar 

  16. Lehninger AL, Sice J (1955) J Am Chem Soc 77:5343–5345

    Article  Google Scholar 

  17. Rose IA, O’Connell EL, Mehler AH (1965) J Biol Chem 240:1758–1765

    CAS  Google Scholar 

  18. Shigemasa Y, Yokoyama K, Sashiwa H, Saimoto H (1994) Tetrahedron Lett 35:1263–1266

    Article  CAS  Google Scholar 

  19. Saimoto H, Yatani S, Sashiwa H, Shigemasa Y (1995) Tetrahedron Lett 36:937–938

    Article  CAS  Google Scholar 

  20. Morgenlie S (1982) Carb Res 107:137–141

    Article  CAS  Google Scholar 

  21. Morgenlie S (1987) J Carb Chem 6:661–671

    Article  CAS  Google Scholar 

  22. Morgenlie S (1987) Acta Chem Scand B Org Chem Biochem B41:745–748

    Article  CAS  Google Scholar 

  23. Morgenlie S (1988) Acta Chem Scand B Org Chem Biochem B42:546–549

    Article  CAS  Google Scholar 

  24. Gutsche CD, Buriks RS, Nowotny K, Grassner H (1962) J Am Chem Soc 84:3775–3777

    Article  CAS  Google Scholar 

  25. Gutsche CD, Redmore D, Buriks RS, Nowotny K, Grassner H, Armbruster CW (1967) J Am Chem Soc 89:1235–1245

    Article  CAS  Google Scholar 

  26. Noe CR, Knollmüller M, Ettmayer P (1989) Liebigs Ann 7:637–643

    Google Scholar 

  27. Hirabayashi J (1976) Q Rev Biol 71:365–380

    Article  Google Scholar 

  28. Kim HJ, Ricardo A, Illangkoon HI, Kim MJ, Carrigan MA, Frye F, Benner S (2011) J Am Chem Soc 133:9457–9468

    Article  CAS  Google Scholar 

  29. Simonov AN, Pestunova OP, Matvienko LG, Snytnikov VN, Snytnikova OA, Tsentalovich YP, Parmon VN (2007) Adv Space Res 40:1634–1640

    Article  CAS  Google Scholar 

  30. Weber AL (2001) Origin Life Evol Biosphere 31:71–86

    Article  CAS  Google Scholar 

  31. Pizzarello S, Weber AL (2004) Science 303:1151–1153

    Article  CAS  Google Scholar 

  32. Kim H-J, Ricardo A, Illangkoon HI, Kim MJ, Carrigan MA, Frye F, Benner SA (2011) J Am Chem Soc 133:9457–9468

    Article  CAS  Google Scholar 

  33. Safi VN, Punna V, Hu F, Meher G, Krishnamurthy R (2012) J Am Chem Soc 134:3577–3589

    Article  Google Scholar 

  34. Notz W, List B (2000) J Am Chem Soc 122:7386–7387

    Article  CAS  Google Scholar 

  35. Guillena G, Najera C, Ramon DJ (2007) Tetrahedron: Asymm 18:2249–2293

    Google Scholar 

  36. Mukherjee S, Yang JW, Hoffmann S, List B (2007) Chem Rev 107:5471–5569

    Article  CAS  Google Scholar 

  37. Aldridge S (2006) Chem World 3:58–61

    CAS  Google Scholar 

  38. Mlynarski J, Gut B (2012) Chem Soc Rev 41:587–596

    Article  CAS  Google Scholar 

  39. Cόrdova A, Notz W, Barbas III CW (2002) Chem Commun: 3024–2025

    Google Scholar 

  40. Wu X, Jiang Z, Shen HM, Lu Y (2007) Adv Synth Catal 349:812–816

    Google Scholar 

  41. Enders D, Grondal C (2005) Angew Chem Int Ed 44:1210–1212

    Article  CAS  Google Scholar 

  42. Suri FT, Mitsumori S, Albertshofer K, Tanaka F, Barbas CW III (2006) J Org Chem 71:3822–3828

    Article  CAS  Google Scholar 

  43. Enders D, Narine AA (2008) J Org Chem 73:7857–7870

    Article  CAS  Google Scholar 

  44. Grondal C, Enders D (2006) Tetrahedron 62:329–337

    Article  CAS  Google Scholar 

  45. Limbach M (2005) Chem Biodiver 2:825–836

    Article  CAS  Google Scholar 

  46. Kolb HC, van Nieuwenhze MS, Sharpless KB (1994) Chem Rev 94:2483–2547

    Article  CAS  Google Scholar 

  47. Utsumi N, Imai M, Tanaka F, Ramasastry SSV, Barbas CF III (2007) Org Lett 9:3445–3448

    Article  CAS  Google Scholar 

  48. Ramasastry SSV, Albersthofer K, Utsumi N, Barbas CF III (2008) Org Lett 10:1621–1624

    Article  CAS  Google Scholar 

  49. Ramasastry SSV, Albertshofer K, Utsumi N, Tanaka F, Barbas CF III (2007) Angew Chem Int Ed 46:5572–5575

    Article  CAS  Google Scholar 

  50. Markert M, Mulzer M, Schetter B, Mahrwald R (2007) J Am Chem Soc 129:7258–7259

    Article  CAS  Google Scholar 

  51. Giner JL (1998) Tetrahedron Lett 39:2479–2482

    Article  CAS  Google Scholar 

  52. Popik O, Pasternak-Suder M, Lesniak K, Jawiczuk M, Gorecki M, Frelek J, Mlynarski J (2014) J Org Chem 79:5728–5739

    Article  CAS  Google Scholar 

  53. Popik O, Zambron B, Mlynarski J (2013) Eur J Org Chem 7484–7487

    Google Scholar 

  54. Nicolas C, Pluta R, Pasternak-Suder M, Martin OR, Mlynarski J (2013) Eur J Org Chem 1296–1305

    Google Scholar 

  55. Grondal C, Enders D (2007) Adv Synt Catal 349:694–702

    Article  CAS  Google Scholar 

  56. Moles FJN, Banon-Caballero A. Guillena G, Najera C (2014) Tetrahedron: Asymm 25:1323–1330

    Google Scholar 

  57. Fanton J, Camps F, Castillo JA, Guerard-Helaine C, Lemaire M, Charmantray F, Hecquet L (2012) Eur J Org Chem 203–210

    Google Scholar 

  58. Palyam N, Niewczas I, Majewski M (2007) Tetrahedron Lett 48:9195–9198

    Article  CAS  Google Scholar 

  59. Miura D, Fujimoto T, Tsutsui A, Machinami T (2013) Synlett 24:1501–1504

    Article  CAS  Google Scholar 

  60. Bergeron-Briek M, Teoh T, Britton R (2013) Org Lett 15:3554–3557

    Article  Google Scholar 

  61. Peifer M, Berger R, Shurtleff VW, Nonrad JC, MacMillan DWC (2014) J Am Chem Soc 136:5900–5903

    Article  CAS  Google Scholar 

  62. Simonovich SP, van Humbeck JF, MacMillan DWC (2013) Chem Sci 3:58–61

    Article  Google Scholar 

  63. List B (2000) J Am Chem Soc 122:9336–9337

    Article  CAS  Google Scholar 

  64. List B, Pojarliev P, Biller WT, Martin HJ (2002) J Am Chem Soc 124:827–833

    Article  CAS  Google Scholar 

  65. Notz W, Sakthivel K, Bui T, Zhong G, Barbas CF III (2001) Tetrahedron Lett 42:199–201

    Article  CAS  Google Scholar 

  66. Cόrdova A, Notz W, Zhong G, Betancort JM, Barbas CF III (2002) J Am Chem Soc 124:1842–1843

    Article  Google Scholar 

  67. Cόrdova A, Watanabe S, Tanaka F, Notz W, Barbas CF III (2002) J Am Chem Soc 124:1866–1867

    Article  Google Scholar 

  68. Hayashi Y, Tsuboi W, Ashimine I, Urushima T, Shoji M, Sakai K (2003) Angew Chem Int Ed 42:3677–3680

    Article  CAS  Google Scholar 

  69. Enders D, Grondal C, Vrettou M, Raabe G (2005) Angew Chem Int Ed 44:4079–4083

    Article  CAS  Google Scholar 

  70. Ibrahem I, Zou W, Engqvist M, Xu Y, Cόrdova A (2005) Chem Eur J 11:7024–7029

    Article  CAS  Google Scholar 

  71. Enders D, Grondal C, Vrettou M (2006) Synthesis 21:3597–3604

    Google Scholar 

  72. Dziedzic P, Ibrahem I, Cόrdova A (2008) Tetrahedron Lett 49:803–807

    Article  CAS  Google Scholar 

  73. Northrup AB, Mangion IK, Hettche F, MacMillan DWC (2004) Angew Chem Int Ed 43:2152–2154

    Article  CAS  Google Scholar 

  74. Northrup AB, MacMillan DWC (2004) Science 305:1752–1755

    Article  CAS  Google Scholar 

  75. Mangion IK, MacMillan DWC (2005) J Am Chem Soc 127:3696–3697

    Article  CAS  Google Scholar 

  76. Mainkar PS, Johny K, Rao TP, Chandrasekhar S (2012) J Org Chem 77:2519–2525

    Google Scholar 

  77. Casas J, Engqvist M, Ibrahem I, Kaynak B, Cόrdova A (2005) Angew Chem Int Ed 44:1343–1345

    Article  CAS  Google Scholar 

  78. Cόrdova A, Ibrahem I, Casas J, Sunden H, Engqvist M, Reyes E (2005) Chem Eur J 11:4772–4784

    Article  Google Scholar 

  79. Fernandez-Lopez R, Kofoed J, Machuqueiro M, Darbre T (2005) Eur J Org Chem 5268–5276

    Google Scholar 

  80. Kofoed J, Reymond J-L, Darbre T (2005) Org Biomol Chem 3:1850–1855

    Article  CAS  Google Scholar 

  81. Kofoed J, Machuqueiro M, Reymond J-L, Darbre T (2004) Chem Commun 1540–1541

    Google Scholar 

  82. Uehara H, Imashiro R, Hernandez-Torres G, Barbas CF III (2010) Proc Natl Acad Sci USA 107:20672–20677

    Article  CAS  Google Scholar 

  83. Aratake S, Itoh T, Okanop T, Usui MS, Hayashi Y (2007) Chem Commun 2524–2526

    Google Scholar 

  84. Burroughs L, Vale ME, Gilks JAR, Forintos H, Hayes CJ, Clarke PA (2010) Chem Commun 46:4776–4778

    Article  CAS  Google Scholar 

  85. Zhao GL, Liao WW, Córdova A (2006) Tetrahedron Lett 47:4929–4932

    Article  CAS  Google Scholar 

  86. Scheffler U, Mahrwald R (2011) Synlett 1660–1667

    Google Scholar 

  87. Markert M, Scheffler U, Mahrwald R (2009) J Am Chem Soc 131:16642–16643

    Article  CAS  Google Scholar 

  88. Scheffler U, Mahrwald R (2012) J Org Chem 77:2310–2330

    Article  CAS  Google Scholar 

  89. Searle PA, Molinski TF (1995) J Org Chem 60:4296–4298

    Article  CAS  Google Scholar 

  90. Enders D, Breuer I, Drosdow E (2005) Synthesis 3239–3244

    Google Scholar 

  91. Rohr K, Mahrwald R (2012) Org Lett 14:2180–2183

    Article  CAS  Google Scholar 

  92. Enders D, Gasperi T (2007) Chem Commun 88–90

    Google Scholar 

  93. Enders D, Dyker H, Raabe G (1992) Angew Chem Int Ed 31:618–620

    Article  Google Scholar 

  94. Enders D, Dyker H, Raabe G, Runsink J (1992) Synlett 901–903

    Google Scholar 

  95. Enders D, Dyker H, Raabe G (1993) Angew Chem Int Ed 32:421–423

    Article  Google Scholar 

  96. El-Sepelgy O, Mlynarski J (2013) Adv Synth Cat 355:281–286

    CAS  Google Scholar 

  97. El-Sepelgy O, Schwarzer D, Oskwarek P, Mlynarski J (2012) Eur J Org Chem 2724–2727

    Google Scholar 

  98. Nakamura S (2014) Org Bioorg Chem 12:394–405

    Article  CAS  Google Scholar 

  99. Wang ZL (2013) Adv Synth Cat 355:2745–2755

    Article  CAS  Google Scholar 

  100. Pan Y, Tan CH (2011) Synthesis 2044–2053

    Google Scholar 

  101. Hailes HC, Dalby PA, Lye GJ, Baganz F, Micheletti M, Szita N, Ward JM (2010) Curr Org Chem 14:1883–1893

    Article  CAS  Google Scholar 

  102. Rohr K, Mahrwald R (2011) Org Lett 13:1878–1880

    Article  CAS  Google Scholar 

  103. Fischer M, Schmölzer C, Nowikow C, Schmid W (2011) Eur J Org Chem 1645–1651

    Google Scholar 

  104. Boehm M, Proksch K, Mahrwald R (2013) Eur J Org Chem 1046–1049

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Mahrwald .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Mahrwald, R. (2015). Total Synthesis of Carbohydrates. In: Modern Organocatalyzed Methods in Carbohydrate Chemistry. SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17593-5_2

Download citation

Publish with us

Policies and ethics