Skip to main content

Optimal Regularity Results Related to a Partition Problem Involving the Half-Laplacian

  • Chapter
  • First Online:
Book cover New Trends in Shape Optimization

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 166))

Abstract

For a class of optimal partition problems involving the half-Laplacian operator and a subcritical cost functionals, we derive the optimal regularity of the density-functions which characterize the partitions, for the entire set of minimizers. We present a numerical scheme based on the arguments of the proof and we collect some numerical results related to the problem.

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 321186: “Reaction-Diffusion Equations, Propagation and Modelling” held by Henri Berestycki, and under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 339958: “Complex Patterns for Strongly Interacting Dynamical Systems” held by Susanna Terracini.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bourdin, D. Bucur, É. Oudet, Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31(6), 4100–4114 (2009/10)

    Google Scholar 

  2. X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. L.A. Caffarelli, F.-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. L.A. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. L.A. Cafferelli, F.H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1–2), 5–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.-M. Chang, C.-S. Lin, T.-C. Lin, W.-W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Phys. D 196(3–4), 341–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Dal Maso, An Introduction to \(\;\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. (Birkhäuser Boston, Inc., Boston, 1993)

    Google Scholar 

  8. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. N.S. Landkof, Foundations of Modern Potential Theory. (Springer, New York, 1972) Translated from the Russian by A.P. Doohovskoy, Die Grundlehrender mathematischen Wissenschaften, Band 180

    Google Scholar 

  10. B. Noris, H. Tavares, S. Terracini, G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    Article  MATH  Google Scholar 

  11. H. Tavares, S. Terracini, Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. Partial Differ. Equ. 45(3–4), 273–317 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Terracini, G. Verzini, A. Zilio, Uniform Hölder bounds for strongly competing systems involving the square root of the Laplacian. Preprint arXiv:1211.6087

  13. S. Terracini, G. Verzini, A. Zilio, Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discret. Contin. Dyn. Syst. 34(6), 2669–2691 (2014)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is indebted with the anonymous referee for suggesting many useful improvements to the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Zilio .

Editor information

Editors and Affiliations

Appendix A: The Brezis-Kato Inequality

Appendix A: The Brezis-Kato Inequality

In this last section, we will give a proof of Corollary 2.7, using in fact the following version of the Brezis-Kato inequality

Lemma A.1

Let \(\Omega \subset \mathbb {R}^N\) be a smooth and bounded domain and let us consider \(\mathbf {u}\in H^{1/2}_\Omega (\mathbb {R}^N, \mathbb {R}^k)\) to be solutions to the system

$$\begin{aligned} (- \Delta )^{1/2} u_i = a_i (1+|u_i|) - \beta u_i \sum \limits _{j \ne i} u_j^2. \end{aligned}$$
(A.1)

where \(a_i \in L^N(\mathbb {R}^N)\). Then \(u_i \in L^\infty (\mathbb {R}^N)\) for all \(i = 1, \ldots , k\) and the norm can be bounded uniformly in \(\beta \) with a constant that depends only on the \(H^{1/2}\)-norm of \(\mathbf {u}\) and the \(L^N\)-norm of \(a_i\).

Remark A.2

In order to apply the previous result to the setting of Corollary 2.7, it is sufficient to introduce the functions

$$ a_{i,\beta } : = \frac{(\gamma _{i,\beta } - Ke'(u_{i,\beta } - \bar{u}_i))u_{i,\beta } - f_i(x,u_{i,\beta }) }{ 1 + |u_{i,\beta }|} $$

and to observe that, thanks to the sub-criticality of \(f_i\) and the uniform boundedness of Lagrange multipliers, we have \(\Vert a_{i,\beta }\Vert _{L^N(\mathbb {R}^N)} \le C \) uniformly in \(\beta \).

Proof

In order to simplify the proof, we resort to the extensional formulation of the half-Laplacian, relating the system (A.1) to

$$ {\left\{ \begin{array}{ll} - \Delta v_i = 0 &{}\text {in}\ \mathbb {R}^{N+1}_+\\ \partial _{\nu } v_i = a_i (1+|v_i|) - \beta v_i \sum \limits _{j \ne i} v_j^2 &{}\text {on}\ \Omega \subset \partial \mathbb {R}^{N+1}_+ \\ v_i = 0 &{}\text { on}\ \mathbb {R}^N \setminus \Omega \end{array}\right. } $$

where \(v_i \in H^1(\mathbb {R}^{N+1}_+)\) satisfy \(v_i(\cdot , 0) = u_i\). Let \(g_\varepsilon \in \mathcal {C}^{\infty }(\mathbb {R})\) be a smooth approximation of the modulus functions, that is, \(g_\varepsilon (t) = \sqrt{\varepsilon +t^2}\). The Stampacchia’s lemma and the Lebesgue’s theorem ensure that

$$ g_\varepsilon (v_i) \rightarrow |v_i| \text { in}\ H^1(\mathbb {R}^{N+1}_+), \quad g_\varepsilon '(v_i)v_i \rightarrow |v_i| \text { in}\ L^2(\mathbb {R}^{N}) $$

For any test function \(\phi \in H^1(\mathbb {R}^{N+1}_+)\) such that \(\phi \ge 0\), we have

$$\begin{aligned}&\int _{\mathbb {R}^{N+1}_+} \nabla g_\varepsilon (v_i) \nabla \phi + \int _{\mathbb {R}^N} \beta g_\varepsilon '(v_i) v_i \sum \limits _{j \ne i} v_j^2 \phi \\&= \int _{\mathbb {R}^{N}} g_\varepsilon '(v_i) a_i (1+|v_i|)\phi - \int _{\mathbb {R}^{N+1}_+} g_\varepsilon ''(v_i) |\nabla v_i|^2 \phi \end{aligned}$$

and letting \(\varepsilon \rightarrow 0^+\) we obtain

$$ \int _{\mathbb {R}^{N+1}_+} \nabla |v_i| \nabla \phi + \int _{\mathbb {R}^N} \beta |v_i| \sum \limits _{j \ne i} v_j^2 \phi \le \int _{\mathbb {R}^{N}} \mathrm {sgn}(v_i) a_i (1+|v_i|) \phi . $$

(similar computations are present in [12, Lemma 5.5]). As a result, each \(|v_i| \in H^1(\mathbb {R}^{N+1}_+)\) is a subsolution of the equation in \(w_i \in H^1(\mathbb {R}^{N+1}_+)\)

$$ {\left\{ \begin{array}{ll} - \Delta w_i = 0 &{}\text {in}\ \mathbb {R}^{N+1}_+\\ \partial _{\nu } w_i = |a_i| (1+w_i) &{}\text {on}\ \Omega \subset \partial \mathbb {R}^{N+1}_+\\ w_i = 0 &{}\text {on}\ \mathbb {R}^N \setminus \Omega \end{array}\right. } $$

Thus, if we show a uniform bound for the functions \(w_i\) in \(L^\infty \), by the comparison principle we could evince that the same bounds holds for the functions \(|v_i|\). To conclude it is then sufficient to recall the Brezis-Kato estimate for the half-Laplacian, shown in [2, Theorem 5.2], which implies the sought \(L^\infty \) bound.   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zilio, A. (2015). Optimal Regularity Results Related to a Partition Problem Involving the Half-Laplacian. In: Pratelli, A., Leugering, G. (eds) New Trends in Shape Optimization. International Series of Numerical Mathematics, vol 166. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-17563-8_13

Download citation

Publish with us

Policies and ethics