Skip to main content

Dynamic WLAN Fingerprinting RadioMap for Adapted Indoor Positioning Model

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 513))

Abstract

As a result of Smartphone usage increment a sharp growth in demand for indoor environment computing especially for Location Based Services (LBS) has been occurred. The basic concept of LBS is to determine the mobile users’ location, which is important for services such as tracking or navigation in Civil defense and Healthcare. Currently, there are many techniques used to locate a mobile user in indoor environment. WLAN is considered as one of the best choices for indoor positioning due to its low cost, simple configuration and high accuracy. Although the WLAN Received Signal Strength Indicator (RSSI) fingerprinting method is the most accurate positioning method, it has a serious drawback because it’s Radio Map (RM) become outdated when environmental change occurs. In addition, recalibrating the RM is a time consuming process. This paper presents a novel adapted indoor positioning model which uses the path loss propagation model of the wireless signal to overcome the outdated RM. The experimental results demonstrate that the proposed adapted model is highly efficient in solving the problems mentioned especially in a dynamically changing environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mantoro, T., CutifaSafitri, M.A., Ayu, E.: Optimization of cellular automata for user location determination using IEEE 802.11. In: 2012 International Conference on Indoor Positioning and Indoor Navigation, 13–15th November 2012 (2012)

    Google Scholar 

  2. Farid, Z., Nordin, R., Ismail, M.: Recent advances in wireless indoor localization techniques and system. J. Comput. Netw. Commun. 2013, 12 (2013)

    Google Scholar 

  3. Liu, H., et al.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man, Cybern. Part C: Appl. Rev. 37(6), 1067–1080 (2007)

    Article  Google Scholar 

  4. Liu, Y., et al.: Location, localization, and localizability. J. Comput. Sci. Technol. 25(2), 274–297 (2010)

    Article  Google Scholar 

  5. Pace, S., et al.: The global positioning system: assessing national policies (1995). DTIC Document

    Google Scholar 

  6. Schiller, J., Voisard, A.: Location-Based Services. Elsevier, San Fransisco (2004)

    Google Scholar 

  7. Chen, P., et al.: Survey of WLAN fingerprinting positioning system. Appl. Mech. Mater. 380, 2499–2505 (2013)

    Article  Google Scholar 

  8. Deak, G., Curran, K., Condell, J.: A survey of active and passive indoor localisation systems. Comput. Commun. 35(16), 1939–1954 (2012)

    Article  Google Scholar 

  9. Yanying, G., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutorials 11(1), 13–32 (2009)

    Article  Google Scholar 

  10. Zhang, D., et al.: Localization technologies for indoor human tracking. In: 2010 5th International Conference on Future Information Technology (FutureTech), IEEE (2010)

    Google Scholar 

  11. Gezici, S.: A survey on wireless position estimation. Wireless Pers. Commun. 44(3), 263–282 (2008)

    Article  Google Scholar 

  12. Youssef, M.A., Agrawala, A., Udaya Shankar, A.: WLAN location determination via clustering and probability distributions. In: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, (PerCom 2003). IEEE (2003)

    Google Scholar 

  13. Youssef, M., Agrawala, A.: The horus WLAN location determination system. In: Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, pp. 205–218. ACM, Seattle, Washington (2005)

    Google Scholar 

  14. Roos, T., et al.: A probabilistic approach to WLAN user location estimation. Int. J. Wireless Inf. Netw. 9(3), 155–164 (2002)

    Article  Google Scholar 

  15. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  16. Lin, T.-N., Lin, P.-C.: Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks. In: 2005 International Conference on Wireless Networks, Communications and Mobile Computing, IEEE (2005)

    Google Scholar 

  17. Brunato, M., Battiti, R.: Statistical learning theory for location fingerprinting in wireless LANs. Comput. Netw. 47(6), 825–845 (2005)

    Article  MATH  Google Scholar 

  18. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)

    Google Scholar 

  19. Shih-Hau, F., Tsung-Nan, L.: Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments. IEEE Trans. Neural Netw. 19(11), 1973–1978 (2008)

    Article  Google Scholar 

  20. Harle, R.: A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutorials 15(3), 1281–1293 (2013)

    Article  Google Scholar 

  21. Xiaoyong, C., Qiang, Y.: Reducing the calibration effort for location estimation using unlabeled samples. In: Third IEEE International Conference on Pervasive Computing and Communications, PerCom 2005 (2005)

    Google Scholar 

  22. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of the INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE (2000)

    Google Scholar 

  23. Di, W., Yubin, X., Lin, M.: Research on RSS based indoor location method. In: Pacific-Asia Conference on Knowledge Engineering and Software Engineering, KESE 2009 (2009)

    Google Scholar 

  24. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks, Proceedings, IEEE (2004)

    Google Scholar 

  25. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  26. Hae-Won, S., Noh-Hoon, M.: A deterministic ray tube method for microcellular wave propagation prediction model. IEEE Trans. Antennas Propag. 47(8), 1344–1350 (1999)

    Article  Google Scholar 

  27. Athanasiadou, G.E., Nix, A.R., McGeehan, J.P.: A microcellular ray-tracing propagation model and evaluation of its narrow-band and wide-band predictions. IEEE J. Sel. Areas Commun. 18(3), 322–335 (2000)

    Article  Google Scholar 

  28. Mardeni, R., Solahuddin, Y.: Path loss model development for indoor signal loss prediction at 2.4 GHz 802.11n network. In: Microwave and Millimeter Wave Technology (ICMMT) (2012)

    Google Scholar 

  29. Andrade, C.B., Hoefel, R.P.F.: IEEE 802.11 WLANs: a comparison on indoor coverage models. In: 2010 23rd Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE (2010)

    Google Scholar 

  30. Akl, R.: Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks. University Of North Texas, Denton (2005)

    Google Scholar 

  31. Borrelli, A., et al.: Channel models for IEEE 802.11 b indoor system design. In: 2004 IEEE International Conference on Communications. IEEE (2004)

    Google Scholar 

  32. Phaiboon, S.: An empirically based path loss model for indoor wireless channels in laboratory building. In: TENCON 2002 Proceedings of the 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. IEEE (2002)

    Google Scholar 

  33. Lott, M., Forkel, I.: A multi-wall-and-floor model for indoor radio propagation. In: IEEE VTS 53rd Vehicular Technology Conference, VTC 2001 Spring (2001)

    Google Scholar 

  34. Cheung, K.-W., Sau, J.-M., Murch, R.D.: A new empirical model for indoor propagation prediction. IEEE Trans. Veh. Technol. 47(3), 996–1001 (1998)

    Article  Google Scholar 

  35. Seidel, S.Y., Rappaport, T.S.: 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Antennas Propag. 40(2), 207–217 (1992)

    Article  Google Scholar 

  36. Krishnan, P., et al.: A system for LEASE: location estimation assisted by stationary emitters for indoor RF wireless networks. In: INFOCOM 2004, Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (2004)

    Google Scholar 

  37. Chen, Y.-C., et al.: Sensor-assisted wi-fi indoor location system for adapting to environmental dynamics. In: Proceedings of the 8th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems. ACM (2005)

    Google Scholar 

  38. Jie, Y., Qiang, Y., Ni, L.M.: Learning adaptive temporal radio maps for signal-strength-based location estimation. IEEE Trans. Mob. Comput. 7(7), 869–883 (2008)

    Article  Google Scholar 

  39. Segou, O.E., Mitilineos, S.A., Thomopoulos, S.C.A.: DALE: a range-free, adaptive indoor localization method enhanced by limited fingerprinting. In: 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (2010)

    Google Scholar 

  40. Lo, C.-C., Hsu, L.-Y., Tseng, Y.-C.: Adaptive radio maps for pattern-matching localization via inter-beacon co-calibration. Pervasive Mob. Comput. 8(2), 282–291 (2012)

    Article  Google Scholar 

  41. Atia, M.M., Noureldin, A., Korenberg, M.J.: Dynamic online-calibrated radio maps for indoor positioning in wireless local area networks. IEEE Trans. Mob. Comput. 12(9), 1774–1787 (2013)

    Article  Google Scholar 

  42. Ji, Y., Biaz, S., Pandey, S., Agrawal, P.: Dynamic indoor localization using wireless ethernet: the ARIADNE system. In: Braun, T., Carle, G., Fahmy, S., Koucheryavy, Y. (eds.) WWIC 2006. LNCS, vol. 3970, pp. 299–310. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  43. Hung-Huan, L., Yu-Non, Y.: WiFi-based indoor positioning for multi-floor environment. In: IEEE Region 10 Conference TENCON 2011–2011 (2011)

    Google Scholar 

  44. Narzullaev, A., Park, Y.: Novel calibration algorithm for received signal strength based indoor real-time locating systems. AEU – Int. J. Electron. Commun. 67(7), 637–644 (2013)

    Article  Google Scholar 

  45. Fan, X., Shin, Y.: Indoor localization for multi-wall, multi-floor environments in wireless sensor networks. In: AICT 2013, The Ninth Advanced International Conference on Telecommunications (2013)

    Google Scholar 

  46. Shi, J., Shin, Y.: A low-complexity floor determination method based on WiFi for multi-floor buildings. In: AICT 2013, The Ninth Advanced International Conference on Telecommunications (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyad H. Alshami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alshami, I.H., Ahmad, N.A., Sahibuddin, S. (2015). Dynamic WLAN Fingerprinting RadioMap for Adapted Indoor Positioning Model. In: Fujita, H., Selamat, A. (eds) Intelligent Software Methodologies, Tools and Techniques. SoMeT 2014. Communications in Computer and Information Science, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-319-17530-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17530-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17529-4

  • Online ISBN: 978-3-319-17530-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics