Advertisement

Effect of Water Hammer on Bent Pipes in the Absence or Presence of a Pre-crack

  • Manel DalleliEmail author
  • Mohamed Ali Bouaziz
  • Mohamed Amine Guidara
  • Ezzeddine Hadj Taïeb
  • Christian Schmitt
  • Zitouni Azari
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

In this study, transient pressure in piped liquid due to waterhammer is a function of structural restraint at elbows. To study the effect of this phenomenon on polyethylene elbowed pipe networks, experimental tests were performed on polyethylene bent pipes, either in the absence or presence of a pre-crack by measuring the toughness and determining the mechanical behavior of HDPE. These characteristics were been used to perform simulations using ABAQUS software, the internal pressure increase, to investigate the safety of bent pipes using an angle of 90 ° bend with 11.4 mm thickness and a right portion of 150 mm as length.

We know that the crack size has a great influence on the fracture energy but we have also shown that the position of the pre-crack has effect on the safety of bent pipes, this is linked to the concentration of the stress.

Keywords

pipe elbow waterhammer pre-crack polyethylene HD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benhamena, A., Bouiadjra, B., Amrouche, A., Mesmacque, G., Benseddiq, N., Benguediab, M.: Three finite element analysis of semi-elliptical crack in high density polyethylene pipe subjected to internal pressure. Materials and Design 31, 3038–3043 (2010)CrossRefGoogle Scholar
  2. Benhamena, A., Aminallah, L., Bouiadjra, B., Benguediab, M., Amrouche, A., Benseddiq, N.: J integral solution for semi-elliptical surface crack in high density poly-ethylene pipe under bending. Materials and Design 32, 2561–2569 (2011)CrossRefGoogle Scholar
  3. Bouaziz, M., Guidara, M., Schmitt, C., Hadj-Taïeb, E., Azari, Z.: Water hammer effects on a gray cast iron water network after adding pumps. Engineering Failure Analysis (2014), doi:10-1016/j.engfailanal,04.023Google Scholar
  4. Brostow, W., Fleissner, M., Müller, W.: Slow crack propagation in polyethylene: etermination and prediction. Polymer 3, 419–425 (1999)Google Scholar
  5. Favier, V., Giroud, T., Strijko, E., Hiver, J.M., G’Sell, C., Hellinckx, S., et al.: Slow crack propagation in polyethylene under fatigue at controlled stress intensity. Polymer 43, 1375–1382 (2002)CrossRefGoogle Scholar
  6. Guidara, M.A., Bouaziz, M.A., Schmitt, C., Capelle, J., Haj Taieb, E., Azari, Z., Hariri, S.: Burst test and J-integral crack growth criterion in high density poly-ethylene pipe subjected to internal pressure. In: Multiphysics Modelling and Simulation for Systems Design, MMSSD 2014, Sousse-Tunisia, Decembre 17-19, Paper ID 92 (2014)Google Scholar
  7. Rice, J.R.: A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics 35, 379–386 (1968)CrossRefGoogle Scholar
  8. Hou, Q., Kruisbrink, A.C.H., Pearce, F.R., Tijsseling, A.S., Yue, T.: Smoothed particle hydrodynamics simulations of flow separation at bends. Computers & Fluids 90, 138–146 (2014)CrossRefGoogle Scholar
  9. Lampman, S.: Characterization and Failure Analysis of Plastics. ASM International, France (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Manel Dalleli
    • 1
    Email author
  • Mohamed Ali Bouaziz
    • 2
  • Mohamed Amine Guidara
    • 2
  • Ezzeddine Hadj Taïeb
    • 1
  • Christian Schmitt
    • 2
  • Zitouni Azari
    • 2
  1. 1.Laboratoire de Mécanique des Fluides Appliqués, Génie des Procédés et EnvironnementEcole Nationale d’Ingénieurs de SfaxSfaxTunisie
  2. 2.Laboratoire de Biomécanique, Polymères et Structures (LaBPS)Ecole Nationale d’Ingénieurs de MetzMetzFrance

Personalised recommendations