Advertisement

Perforation of Aluminum Foam Core Sandwich Panels under Impact Loading: A Numerical Study

  • Ibrahim Elnasri
  • Han Zhao
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This paper reports the numerical results of the inversed perforation test instrumented by Split Hopkinson Pressure Bar SHPB with an instrumented pressure bar on the AlSi7Mg 0.5 aluminum foam core sandwich panels with 0.8mm thick 2024 T3 aluminum top and bottom skin. The numerical models are developed, in order, to understand the origin of enhancement at the top skin loads found under impact loading (paper published by (Zhao et al. 2006)). The predicted numerical piercing force vs. the displacement curves are compared to the experimental measurements (tests at impact velocities at 27 and 44 m/s). The simulation catches all processes of the perforation of the sandwich panels (top skin, foam core, and bottom skin). Within this experimental scatter, there is a good agreement between the numerical predictions and the experimental measurements. Virtual tests with different impact velocities up to 200 m/s are presented and showed a significant enhancement of the piercing force under impact loading (top skin peak and foam core plateau loads). The results also demonstrate that the shock front effect is responsible for the enhancement of the piercing force under impact loading.

Keywords

Perforation sandwich panel foam shock wave impact numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hou, W., Zhang, H., Lu, G., Huang, X.: Failure modes of circular aluminium sandwich panels with foam core under quasi-static loading. In: Conference on Shock and Impact Load on Structures, pp. 275–82 (2005)Google Scholar
  2. Hanssen, A.G., Girard, Y., Olovsson, L., Berstad, T., Langseth, M.: A numerical model for bird strike of aluminium foam-based sandwich panels. Int. J. Impact Eng. 32(7), 1127–1147 (2006)CrossRefGoogle Scholar
  3. Cantwell, W.J., Kiratisaevee, H.: Low-velocity impact response of highperformance aluminum foam sandwich structures. J. Reinf Plast Compos 24(10), 1057–1072 (2005)CrossRefGoogle Scholar
  4. Zhao, H., Elnasri, I., Girard, Y.: Perforation of aluminium foam core sandwich panels under impact loading: an experimental study. Int. J. Impact Eng. 34(7), 1246–1257 (2007)CrossRefGoogle Scholar
  5. LS-DYNA keyword user’s manual, Livermore Software Technology Corporation (2007)Google Scholar
  6. Lemaitre, J.: A course on damage mechanics. 2nd ed. Springer, Berlin (1996) ISBN 3-540 Google Scholar
  7. Pattofatto, S., Zeng, H.B., Zhao, H.: On the piercing force enhancement of aluminium foam sandwich plates under impact loading. J. Sand. St. Mat. 2, 211–226 (2011)Google Scholar
  8. Hanssen, A.G., Hopperstad, O.S., Langsethand, M., Ilstad, H.: Validation of constitutive modelsapplicable for aluminium foams. I. J. Mech. Sc. 44, 359–406 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ibrahim Elnasri
    • 1
    • 2
  • Han Zhao
    • 3
  1. 1.Laboratoire de Génie MécaniqueEcole Nationale d’Ingénieurs de MonastirMonastirTunisia
  2. 2.Institut Supérieur des Systèmes Industriels de GabèsGabèsTunisia
  3. 3.Laboratoire de Mécanique et Technologie, ENS-Cachan/CNRS-UMR8535/Université de Paris SaclayCachan cedexFrance

Personalised recommendations