Degradation of Mechanical Proprieties of TiN Coatings under Cyclic Nanoindentation

  • Kaouther KhlifiEmail author
  • Hafedh Dhifelaoui
  • Ahmed Ben Cheikh Larbi
  • Ali Beskri
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


TiN thin film was deposited on 100C6 steel (AISI 52100) substrate with the PVD technique using magnetron sputtering. Morphological examination showed the presence of domes and craters which are uniformly distributed over the entire surface. Mechanical properties, plastic and elastic deformation resistance of TiN coating were studied using conventional indentation method. Cyclic nanoindentation technique, with variation of loading rate, was used to analyze the failure modes and depth profile of mechanical proprieties of TiN thin film. Cyclic nanoindentation technique was performed with a Berkovich indenter at maximum loads of 100 mN, then unloaded to 100% of the maximum load and repeatedly re-loaded. The indentation cycles were 200 cycles. When the loading rate was increased from 200mN/mn to 400mN/mn, the mechanical proprieties were decreased. For the highest loading rate (400 mN/mn), hardness and Young’s modulus falling have reached to 50, 50 % and 71,28% respectively.


cyclic nanoindentation thin film depth profile mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. PalDey, S., Deevi, S.C.: Mater. Sci. Eng. A-Struct. 342 58 (2003)Google Scholar
  2. Vaz, F., Rebouta, L., Andritschky, M., da Silva, M.F., Soares, J.C.: J. Mater. Process. Technol. 169, 92–93 (1999)Google Scholar
  3. Sveen, S., Andersson, J.M., M’Saoubi, R., Olsson, M.: Wear 308, 133–141 (2013)CrossRefGoogle Scholar
  4. Sprute, T., Tillmann, W., Grisales, D., Selvadurai, U., Fischer, G.: Surface & Coatings Technology, 369–379 (2014)Google Scholar
  5. Birol, Y., I’sler, D.: Materials Science and Engineering A 528, 4703–4709 (2011)CrossRefGoogle Scholar
  6. Fuentes, G.G., Almandoz, E., Pierrugues, R., Martinez, R., Rodriguez, R.J., Caro, J., Vilaseca, M.: Surf. Coat. Technol. 205, 1368 (2010)Google Scholar
  7. Chen, L., Wang, S.Q., Zhou, S.Z., Li, J., Zhang, Y.Z.: International Journal of Refractory Metals & Hard Materials 26, 456–460 (2008)CrossRefGoogle Scholar
  8. Hainsworth, S.V., Soh, W.C.: Surface and Coatings Technology, 163–164, 515–520 (2003)Google Scholar
  9. Bouzakis, K.-D., Skordarisa, G., Hadjiyiannisa, S., Asimakopoulosa, A., Mirisidisa, J., Michailidisa, N., Erkensb, G., Cremerb, R., Klockec, F., Kleinjansc, M.: Thin Solid Films, 264–271, 447–448 (2004)Google Scholar
  10. Saraswati, T., Sritharan, T., Mhaisalkar, S., Breach, C.D., Wulff, F.: J. Mater. Sci. Eng., Gogotsi, Y.G., Domnich, V., Dub, S.N., Kailer, A., Nickel, K.G.: J. Mater. Res. 15, 871 (2000)Google Scholar
  11. Trivedi, R., Cech, V.: Surface & Coatings Technology 205, S286–S289 (2010)Google Scholar
  12. Khlifi, K., Ben Cheikh Larbi, A.: Journal of Adhesion Science and Technology 1, 28 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kaouther Khlifi
    • 1
    Email author
  • Hafedh Dhifelaoui
    • 1
  • Ahmed Ben Cheikh Larbi
    • 1
  • Ali Beskri
    • 2
  1. 1.Ecole Nationale Supérieure des Ingénieurs de TunisUniversité de TunisTunisTunisia
  2. 2.Ecole Polytechnique de TunisieUniversité de CarthageCarthageTunisia

Personalised recommendations