Advertisement

Characterisation of Polishing 316L Stainless Steel with Structured Abrasive Belts

  • François GoossensEmail author
  • Mehdi Cherif
  • Olivier Cahuc
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Finishing process like polishing is usually used to obtain high quality mechanical surface characteristics such as texture and roughness. These operations are mainly handmade and need highly trained operators thus limiting their repeatability and profitability. To optimize the industrialization of the polishing process, it is therefore necessary to modelize the process to built efficient parameter database. The aim of this study is to characterise the polishing of 316L stainless steel with structured abrasive belts. The geometric data of the belts are given, and we then propose a model to determine material removal. An experimental test bench is set up to test this model and characterise the polishing process in terms of forces. It produces samples for different polishing conditions. The different polished surfaces are then analyzed thanks to the roughness and the wettability. Using experimental designs, we are able to validate the proposed model and identify the parameters that influence a polishing operation.

Keywords

polishing structured abrasive roughness material removal rate wettability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Felder, E.: Usinage par abrasion - analyse expérimentale et théorique. Techniques de l’Ingénieur (2009)Google Scholar
  2. Guiot, A., Tournier, C., Quinsat, Y.: Modélisation de l’usure des abrasifs pour garantir la qualité des surfaces polies. 13ème Colloque National AIP PRIMECA (2012)Google Scholar
  3. ISO 4287. Geometrical Product Specifications (GPS) – Surface texture : Profile method – Terms, definitions and surface texture parameters (1998)Google Scholar
  4. Klocke, F., Dambon, O., Zunke, R.: Modeling of contact behavior between polishing pad and workpiece surface. Prod. Eng. Res. Devel. 2, 9–14 (2008), doi:10.1007/s11740-007-0059-zCrossRefGoogle Scholar
  5. Lacharnay, V., Tournier, C., Poulachon, G.: Design of experiments to optimise automatic polishing on five–axis machine tool. International Journal of Machining and Machinability of Materials 12, 76–87 (2012)CrossRefGoogle Scholar
  6. Luo, J., Dornfeld, D.: Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Transactions on Semiconductor Manufacturing 14, 112–133 (2001), doi:10.1109/66.920723CrossRefGoogle Scholar
  7. Nagata, F., Hase, T., Haga, Z., Omoto, M., Watanabe, K.: CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics 17, 207–216 (2007), doi:10.1016/j.mechatronics.2007.01.003CrossRefGoogle Scholar
  8. Pessoles, X., Tournier, C.: Automatic polishing process of plastic injection molds on a 5-axis milling center. Journal of Materials Processing Technology 209, 3665–3673 (2009), doi:10.1016/j.jmatprotec.2008.08.034CrossRefGoogle Scholar
  9. Preston, F.W.: The Theory and Design of Plate Glass Polishing Machines. Journal of the Soc of Glass Technology, 214–256 (1927)Google Scholar
  10. Wang, C.-C., Lin, S.-C., Hochen, H.: A material removal model for polishing glass–ceramic and aluminum magnesium storage disks. International Journal of Machine Tools and Manufacture 42, 979–984 (2002), doi:10.1016/S0890-6955(02)00004-4CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • François Goossens
    • 1
    Email author
  • Mehdi Cherif
    • 1
  • Olivier Cahuc
    • 1
  1. 1.I2M UMR 5295Univ. BordeauxTalenceFrance

Personalised recommendations