Advertisement

Comparative Study for a Multi-objective MLCSP Problem Solved Using NSGA-II & E-Constraint

  • Wafa Ben YahiaEmail author
  • Houssem Felfel
  • Omar Ayadi
  • Faouzi Masmoudi
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Operational production planning received much attention in the literature. In this paper, a multi-objective MLCLSP problem is proposed and two approaches “ε-constraint” and “NSGA-II” are compared when solving this problem. The multi-objective optimization model aims to minimize simultaneously the total production cost and the average inventory levels in a multi-period, multi-item environment. Several tests are developed to generate the Pareto optimal solution using the two optimization methods. The experimental results indicate that the ɛ-constraint is faster than NSGA-II and provides a better quality of the Pareto optimal solution.

Keywords

Multi-objective MLCLSP model ε-constraint method elitist genetic algorithm NSGA-II 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akartunalı, K., Miller, A.J.: A heuristic approach for big bucket multi-level production planning problems. European Journal of Operational Research 193(2), 396–411 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Almeder, C.: A hybrid optimization approach for multi-level capacitated lot-sizing problems. European Journal of Operational Research 200, 599–606 (2010)CrossRefzbMATHGoogle Scholar
  3. Aarts, E.H.L., Reijnhoudt, M.F., Stehouwer, H.P., Wessels, J.: A novel decomposition approach for on-line lot sizing. European Journal of Operational Research 122, 339–353 (2000)CrossRefzbMATHGoogle Scholar
  4. Barbarosoglu, G., Özdamar, L.: Analysis of solution space-dependent performance of simulated annealing: the case of the multi-level capacitated lot sizing problem. Computers and Operations Research 27, 895–903 (2000)CrossRefzbMATHGoogle Scholar
  5. Berretta, R., Rodrigues, L.F.: A memetic algorithm for a multistage capacitated lot-sizing problem. International Journal of Production Economics 87, 67–81 (2007)CrossRefGoogle Scholar
  6. Berretta, R., Franca, P.M., Armentano, V.A.: Metaheuristic approaches for the multilevel resource-constrained lot-sizing problem with setup and lead times. Asia-Pacific Journal of Operational Research 22, 261–286 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. Boctor, F.F., Poulin, P.: Heuristics for the n-product, m-stage, economic lot sizing and scheduling problem with dynamic demand. International Journal of Production Research 43, 2809–2828 (2005)CrossRefzbMATHGoogle Scholar
  8. Chankong, V., Haimes, Y.: Multi-objective decision making theory and methodology. Elsevier Science, New York (1983)Google Scholar
  9. Chen, H., Chu, C.: A Lagrangian relaxation approach for supply chain planning with order/setup costs and capacity constraints. Journal of Systems Science and Systems Engineering 12, 98–110 (2003)CrossRefGoogle Scholar
  10. Clark, A., Armentano, V.: Echelon stock formulation for multi-stage lot sizing with component lead times. International Journal of Systems Sciences 24(9), 1759–1775 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Coello, C.A., Lamont, G.B.: Application of mutli-objective evolutionary algorithms, 1st edn. World Scientific Pub. Co. Inc. (2004)Google Scholar
  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  13. Deb, K.: Multi-objective optimization using Evolutionary Algorithms. John Wiley & Sons Ltd., Singapore (2001)zbMATHGoogle Scholar
  14. Dellaert, N., Jeunet, J.: Solving large unconstrained multi-level lot-sizing problems using a hybrid genetic algorithm. International Journal of Production Research 38(5), 1083–1099 (2000)CrossRefzbMATHGoogle Scholar
  15. Dellaert, N., Jeunet, J., Jonard, N.: A genetic algorithm to solve the general multi-level lot-sizing problems with time varying costs. International Journal of Production Research 68(5), 241–257 (2000)CrossRefGoogle Scholar
  16. Dudek, G.: Collaborative planning in supply chains: a negotiation-based approach. Springer (2004)Google Scholar
  17. Dudek, G., Stadtler, H.: Negotiations-based collaborative planning between supply chain partners. European Journal of Operational Research 163(3), 668–687 (2005)CrossRefzbMATHGoogle Scholar
  18. Dudek, G., Stadtler, H.: Negotiation-based collaborative planning in divergent two-tier supply. International Journal of Production Research 45(2), 465–484 (2007)CrossRefzbMATHGoogle Scholar
  19. Ertogral, K., Wu, S.D.: Auction-theoretic coordination of production planning in the supply chain. IIE Transactions 32(10), 931–940 (2000)Google Scholar
  20. Franca, R.B., Jones, E.C., Richards, C.N., Carlson, J.: Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality. International Jour. of Production Economics 127(2), 292–299 (2010)CrossRefGoogle Scholar
  21. Gaafar, L.K., Choueiki, M.H.: A neural network model for solving the lot-sizing problem. Omega 28, 175–184 (2000)CrossRefGoogle Scholar
  22. Gopalakrishnan, M., Ding, K., Bourjolly, J.-M., Mohan, S.: A tabu-search heuristic for the capacitated lot-sizing problem with set-up carryover. Management Science 47(6), 851–863 (2001)CrossRefzbMATHGoogle Scholar
  23. Hung, Y.-F., Chien, K.L.: A multi-class multi-level capacitated lot sizing model. Journal of the Operational Research Society 51, 1309–1318 (2000)CrossRefzbMATHGoogle Scholar
  24. Hung, Y.F., Chen, C.P., Shih, C.C., Hung, M.H.: Using tabu search with ranking candidate list to solve production planning problems with setups. Computers & Industrial Engineering 45, 615–634 (2003)CrossRefGoogle Scholar
  25. Jung, H., Song, I., Jeong, B.: Genetic algorithm based integrated production planning considering manufacturing partners. The International Journal of Advanced Manufacturing Technology 32(5-6), 547–556 (2006)CrossRefGoogle Scholar
  26. Kimms, A.: A genetic algorithm for multi-level, multi-machine lot sizing and scheduling. Computers & Operations Research 26, 829–848 (1999)CrossRefzbMATHGoogle Scholar
  27. Maes, J., McClain, J., van Wassenhove, N.: Multilevel capacitated lotsizing complexity and LP-based heuristics. European Journal of Operational Research 53(2), 131–148 (1991)CrossRefzbMATHGoogle Scholar
  28. Kuik, R., Solomon, M., Van Wassenhove, L., Maes, J.: Linear programming simulated annealing and tabu search heuristics for lotsizing in bottleneck assembly systems. IEE Transactions 25(1), 162–172 (1993)CrossRefGoogle Scholar
  29. Özdamar, L., Barbarosoglu, G.: An integrated Lagrangean relaxation-simulated annealing approach to the multi-level multi-item capacitated lot sizing problem. International Journal of Production Economics 68, 319–331 (2000)CrossRefGoogle Scholar
  30. Pitakaso, R., Almeder, C., Doerner, K.F., Hartl, R.F.: Combining population-based and exact methods for multi-level capacitated lot- sizing problems. International Journal of Production Research 44, 4755–4771 (2006)CrossRefzbMATHGoogle Scholar
  31. Sabri, E.H., Beamon, B.: A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega 28(5), 581–598 (2000)CrossRefGoogle Scholar
  32. Sahling, F., Buschkühl, L., Tempelmeier, H., Helber, S.: Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic. Computers & Operations Research 36(2009), 2546–2553 (2009)CrossRefzbMATHGoogle Scholar
  33. Stadtler, H.: Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research 51(3), 487–502 (2003)CrossRefzbMATHGoogle Scholar
  34. Stadtler, H.: Reformulations of the shortest route model for dynamic multi-item multi-level capacitated lotsizing. Operations Research Spektrum 19, 87–96 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  35. Stadtler, H.: Mixed integer programming model formulations for dynamic multi-item multi level capacitated lotsizing. Eur. J. Oper. Res. 94, 561–581 (1996)CrossRefzbMATHGoogle Scholar
  36. Tempelmeier, H., Helber, S.: A heuristic for dynamic multi-item multi-level capacitated lotsizing for general product structures. European Journal of Operational Research 75, 296–311 (1994)CrossRefzbMATHGoogle Scholar
  37. Xie, J., Dong, J.: Heuristic genetic algorithms for general capacitated lot sizing problems. Computers Mathematics with Applications 44(1-2), 263–276 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  38. You, F., Grossmann, I.: Design of responsive supply chains under demand uncertainty. Computers & Chemical Engineering 32(12), 3090–3111 (2008)CrossRefGoogle Scholar
  39. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wafa Ben Yahia
    • 1
    Email author
  • Houssem Felfel
    • 1
  • Omar Ayadi
    • 1
  • Faouzi Masmoudi
    • 1
  1. 1.Mechanics, Modeling and Production Research Laboratory, National Engineering school of Sfax (ENIS)Sfax UniversitySfaxTunisia

Personalised recommendations