Advertisement

Numerical Chain of Forging Railway Axle and Wheel Press Fitting Operation

  • Sofiane SaadEmail author
  • Vincent Magnier
  • Philippe Dufrenoy
  • Eric Charkaluk
  • Franc̨ois Demilly
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

In today’s competitive business environment, it has become increasingly important to reduce manufacturing and raw materials costs. For this purpose, an innovative process of design and manufacturing railway axles is developed. It is based on forging hollow axle which allows a significant reduction in steel consumption. In this work, we tried to analyse how these modifications induced by this new process and design impact on the residual stress field. For this particular study, a numerical chain has been developed going from the simulation of the hot upsetting manufacturing process of the railway axle with the explicit method, to the analysis of the cutting and the press fitting assembly operation. This study consists in modelling the forging process with the dynamic FEM in order to take into account the dynamic phenomena and predict the residual stress field and the initial plastic strain. Then the evaluation of the cutting operation of the upper axle surface and finally the simulation of assembling the wheel on the axle with a static model, to better estimate the stress relaxation and redistribution.

Keywords

Dynamic FE simulation Hot upsetting Press fitting Residual stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Boman(2010)]
    Boman, R.: Développement d’un formalisme arbitraire lagrangien eulérien tridimensionnel en dynamique implicite. application aux opérations de mise à forme. Ph.D. thesis, Université de Liège (March 2010)Google Scholar
  2. [Brooks et al.(1998)Brooks, Dean, Hu, Wey]
    Brooks, J., Dean, T., Hu, Z., Wey, E.: Three-dimensional finite element modelling of a titanium aluminide aerofoil forging. Journal of Materials Processing Technology 80-81, 149–155 (1998)CrossRefGoogle Scholar
  3. [Dang Van et al.(1989)Dang Van, Griveau, and Message]
    Dang Van, K., Griveau, B., Message, O.: On a new multiaxial fatigue criterion: theory and application. biaxial and multiaxial fatigue. In: Brown, M.W., Miller, K.J. (eds.) EGF 3, pp. 479–496. Mechanical Engineering Publications (1989)Google Scholar
  4. [Davey et al.(2001)Davey, Miller, and Ward]
    Davey, K., Miller, B., Ward, M.: Efficient strategies for the simulation of railway wheel forming. Journal of Materials Processing Technology 118(1-3), 389–396 (2001)CrossRefGoogle Scholar
  5. [Debin and Lin(2014)]
    Debin, S., Lin, Y.: Hot forging. In: Yilbas, B., Hashmi, S., Batalha, G.F., Van TyneBekir, C.J. (eds.) Comprehensive Materials Processing, pp. 275–289. Elsevier, Oxford (2014)CrossRefGoogle Scholar
  6. [EN13261(2003)]
    EN13261, Railway applications - wheelsets and bodies - axles - production requirements (2003)Google Scholar
  7. [Hyun(2001)]
    Hyun, S.: Simulating a sequence of manufacturing steps. In: Seventh International Conference on Numerical in Industrial Forming Processes, NUMIFORM 2001 (2001)Google Scholar
  8. [Hyun and Lindgren(2004)]
    Hyun, S., Lindgren, L.-E.: Simulating a chain of manufacturing processes using a geometry-based finite element code with adaptive meshing. Finite Elements in Analysis and Design 40(5-6), 511–528 (2004)CrossRefGoogle Scholar
  9. [Jeong, et al.(2005)Jeong, Cho, Park]
    Jeong, H.S., Cho, J.R., Park, H.C.: Microstructure prediction of nimonic 80a for large exhaust valve during hot closed die forging. Journal of Materials Processing Technology 162-163, 504–511 (2005)CrossRefGoogle Scholar
  10. [Johnson and Cook(1983)]
    Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, vol. 21 (1983)Google Scholar
  11. [Lei et al.(2000)Lei, Kim, and Kang]
    Lei, L.-P., Kim, J., Kang, B.-S.: Analysis and design of hydroforming process for automobile rear axle housing by FEM 40(12), 1691–1708 (2000)Google Scholar
  12. [Lin(1998)]
    Lin, S.: Upsetting of a cylindrical specimen between elastic tools 86(1), 73–80 (February 1998)Google Scholar
  13. [Liu, et al.(2008)Liu, Wang, Chen, Wang]
    Liu, C.-H., Wang, A.-C., Chen, Y.-S., Wang, C.-M.: The coupled thermomechanical analysis in the upsetting process by the dynamic FEM. Journal of Materials Processing Technology 201(1-3), 37–42 (2008)CrossRefMathSciNetGoogle Scholar
  14. [Liu and Zenner(2003)]
    Liu, J., Zenner, H.: Fatigue limit of ductile metals under multiaxial loading. In: de Freitas, M., Carpinteri, A.S.A. (eds.) European Structural Integrity Society. Biaxial/Multiaxial Fatigue and Fracture 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture, vol. 31, pp. 147–164. Elsevier (2003)Google Scholar
  15. [Lucia Garcia(2004)]
    Lucia Garcia, A.: Etude thermo-mécanique et modélisation numérique de l’emboutissage à chaud de l’usibor 1500. Ph.D. thesis, Ecole des mines de Paris (January 2004)Google Scholar
  16. [Lv, et al.(2008)Lv, Zhang, Mu, Tai, Zheng]
    Lv, C., Zhang, L., Mu, Z., Tai, Q., Zheng, Q.: 3d FEM simulation of the multi-stage forging process of a gas turbine compressor blade. Journal of Materials Processing Technology 198(1-3), 463–470 (2008)CrossRefGoogle Scholar
  17. [Öpöz and Chen(2010)]
    Öpöz, T., Chen, X.: Finite element simulation of chip formation. In: School of Computing and Engineering Researchers’ Conference, pp. 166–171 (December 2010)Google Scholar
  18. [Salvatore et al.(2013)Salvatore, Saad, and Hamdi]
    Salvatore, F., Saad, S., Hamdi, H.: Modeling and simulation of tool wear during the cutting process. Procedia CIRP 8, 305–310 (2013)CrossRefGoogle Scholar
  19. [Wang and Nakamura(2004)]
    Wang, Z., Nakamura, T.: Simulations of crack propagation in elastic-plastic graded materials. Mechanics of Materials 36(7), 601–622 (2004)CrossRefGoogle Scholar
  20. [Wisselink and Huétink(2004)]
    Wisselink, H., Huétink, J.: 3d FEM simulation of stationary metal forming processes with applications to slitting and rolling. Journal of Materials Processing Technology 148(3), 328–341 (2004)CrossRefGoogle Scholar
  21. [Yameogo(2004)]
    Yameogo, A.: Etude expérimentale et numérique de l’amorçage et de la propagation de fissures de fretting dans un assemblage roue/essieu ferroviaire. Ph.D. thesis, Ecole Centrale de Paris (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sofiane Saad
    • 1
    • 2
    Email author
  • Vincent Magnier
    • 1
    • 2
  • Philippe Dufrenoy
    • 1
    • 2
  • Eric Charkaluk
    • 2
    • 3
  • Franc̨ois Demilly
    • 4
  1. 1.Univ. Lille Nord de FranceLilleFrance
  2. 2.Laboratoire de Mecanique de LilleUniv. Lille1Villeneuve d’ascqFrance
  3. 3.CNRS, UMR 8107Villeneuve d’AscqFrance
  4. 4.MG-Valdunes SASTrith Saint LegerFrance

Personalised recommendations