Motion Planning and Control of a Space Robot to Capture a Tumbling Debris

  • Vincent DubanchetEmail author
  • David Saussié
  • Daniel Alazard
  • Caroline Bérard
  • Catherine Le Peuvédic


Space robotics has emerged as one of the key technology for on-orbit servicing or debris removal issues. In the latter, the target is a specific point of a tumbling debris, that the ≪ chaser ≫ satellite must accurately track to ensure a smooth capture by its robotic arm. Based on recent works by Aghili, an optimal capture trajectory is presented to match position and speed, but also acceleration of the target. Two controllers are simultaneously synthesized for the satellite and the arm, using the fixed-structure H  ∞  synthesis. Their tracking performance is validated for the tumbling target capture scenario. The main goal is to efficiently track the optimal trajectory while using simple PD-like controllers to reduce computational burden. The fixed-structure H  ∞  framework proves to be a suitable tool to design a reduced-order robust controller compatible with current space processors capabilities.


Motion Planning Trajectory Tracking Space Robot Capture Trajectory Generalize Jacobian Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kessler, D.J., Cour-Palais, B.G.: Collision Frequency of Artificial Satellites: The Creation of a Debris Belt. Journal of Geophysical Research 83(A6), 2637–2646 (1978)CrossRefGoogle Scholar
  2. 2.
    Liou, J.-C.: An active debris removal parametric study for LEO environment remediation. Advances in Space Research 47, 1865–1876 (2011)CrossRefGoogle Scholar
  3. 3.
    Liou, J.-C., Johnson, N.L., Hill, N.M.: Controlling the growth of future LEO debris populations with active debris removal. Acta Astronautica 66(5-6), 648–653 (2010)CrossRefGoogle Scholar
  4. 4.
    NASA Orbital Debris Program Office. Monthly Number of Objects in Earth Orbit by Object Type. Orbital Debris Quaterly News 17(1), 8 (2013)Google Scholar
  5. 5.
    Aikenhead, B.A., Daniell, R.G., Davis, F.M.: Canadarm and the space shuttle. Journal of Vacuum Science & Technology A 1(2), 126–132 (1983)CrossRefGoogle Scholar
  6. 6.
    Inaba, N., Oda, M.: Autonomous satellite capture by a space robot: world first on-orbit experiment on a japanese robot satellite ETS-VII. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, vol. 2, pp. 1169–1174 (2000)Google Scholar
  7. 7.
    Friend, R.B.: Orbital Express program summary and mission overview. In: Howard, R.T., Motaghedi, P. (eds.) Sensors and Systems for Space Applications II, vol. 6958, pp. 1–11 (2008)Google Scholar
  8. 8.
    Boge, T., Wimmer, T., Ma, O., Tzschichholz, T.: EPOS - Using robotics for RvD simulation of on-orbit servicing missions. In: AIAA Modeling and Simulation Technologies Conference, Toronto, Canada, vol. 1, pp. 1–15 (2010)Google Scholar
  9. 9.
    Wang, F., Sun, F., Liu, H.: Space robot modeling and control considering the effect of orbital mechanics. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics, vol. 1, pp. 193–198 (2006)Google Scholar
  10. 10.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John Wiley & Sons, New York (2006)Google Scholar
  11. 11.
    Umetani, Y., Yoshida, K.: Workspace and Manipulability Analysis of Space Manipulator. Transactions of the Society of Instrument and Control Engineers E-1(1), 8 (2001)Google Scholar
  12. 12.
    Umetani, Y., Yoshida, K.: Resolved motion rate control of space robotic manipulators with generalized jacobian matrix. IEEE Transactions on Robotics and Automation 5(3), 303–314 (1989)CrossRefGoogle Scholar
  13. 13.
    Papadopoulos, E., Dubowsky, S.: On the dynamic singularities in the control of free-floating manipulators. In: ASME Winter Annual Meeting, vol. 15, pp. 45–52 (1989)Google Scholar
  14. 14.
    Nanos, K., Papadopoulos, E.: On Cartesian Motions with Singularities Avoidance for Free-floating Space Robots. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 5398–5403 (2012)Google Scholar
  15. 15.
    Nakamura, Y., Mukherjee, R., Barbara, S.: Nonholonomic path planning of space robots. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1050–1055 (1989)Google Scholar
  16. 16.
    Vafa, Z., Dubowsky, S.: On the dynamics of manipulators in space using the virtual manipulator approach. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 579–585 (1987)Google Scholar
  17. 17.
    Papadopoulos, E., Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Transactions on Robotics and Automation 7(6), 750–758 (1991)CrossRefGoogle Scholar
  18. 18.
    Dubowsky, S., Vance, E.E., Torres, M.A.: The Control of Space Manipulators Subject to Spacecraft Attitude Control Saturation Limits. In: NASA Conference on Space Telerobotics, vol. IV, pp. 409–418 (1989)Google Scholar
  19. 19.
    Oda, M.: Motion control of the satellite mounted robot arm which assures satellite attitude stability. Acta Astronautica 41(11), 739–750 (1997)CrossRefGoogle Scholar
  20. 20.
    Dubowsky, S., Torres, M.A.: Path planning for space manipulators to minimize spacecraft attitude disturbances. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2522–2528 (1991)Google Scholar
  21. 21.
    Nenchev, D.N.: Reaction Null Space of a multibody system with applications in robotics. Mechanical Sciences 4(1), 97–112 (2013)CrossRefGoogle Scholar
  22. 22.
    Yoshida, K., Umetani, Y.: Control of space free-flying robot. In: 29th Conference on Decision and Control, vol. 1, pp. 97–102 (1990)Google Scholar
  23. 23.
    Lampariello, R.: On Grasping a Tumbling Debris Object with a Free-Flying Robot. In: IFAC Symposium on Automatic Control in Aerospace, pp. 1–6 (2013)Google Scholar
  24. 24.
    Piersigilli, P., Sharf, I., Misra, A.K.: Reactionless capture of a satellite by a two degree-of-freedom manipulator. Acta Astronautica 66(1-2), 183–192 (2010)CrossRefGoogle Scholar
  25. 25.
    Nguyen-Huynh, T.-C., Sharf, I.: Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 4202–4207 (2011)Google Scholar
  26. 26.
    Nenchev, D.N., Yoshida, K.: Impact analysis and post-impact motion control issues of a free-floating space robot contacting a tumbling object. In: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, vol. 1, pp. 913–919 (1998)Google Scholar
  27. 27.
    Yoshida, K., Nakanishi, H.: Impedance matching in capturing a satellite by a space robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 3059–3064 (2003)Google Scholar
  28. 28.
    Lampariello, R.: Motion Planning for the On-orbit Grasping of a Non-cooperative Target Satellite with Collision Avoidance. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space, vol. 1, pp. 636–643 (2010)Google Scholar
  29. 29.
    Aghili, F.: Coordination Control of a Free-Flying Manipulator and its Base Attitude to Capture and Detumble a Noncooperative Satellite. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2365–2372. IEEE (2009)Google Scholar
  30. 30.
    Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Transactions on Robotics 28(3), 634–649 (2012)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Dubowsky, S., Papadopoulos, E.: The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Transactions on Robotics and Automation 9(5), 531–543 (1993), doi:10.1109/70.258046CrossRefGoogle Scholar
  32. 32.
    Ali, S., Moosavian, A., Papadopoulos, E.: Free-flying robots in space: An overview of dynamics modeling, planning and control. Robotica 25(05), 537–547 (2007)Google Scholar
  33. 33.
    Oda, M.: On the dynamics and control of ETS-7 satellite and its robot arm. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 1586–1593 (1994)Google Scholar
  34. 34.
    Oda, M.: Coordinated control of spacecraft attitude and its manipulator. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 732–738 (1996)Google Scholar
  35. 35.
    Papadopoulos, E., Dubowsky, S.: Coordinated manipulator/spacecraft motion control for space robotic systems. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1696–1701 (1991)Google Scholar
  36. 36.
    Gahinet, P., Apkarian, P.: Structured H  ∞  synthesis in MATLAB. In: IFAC World Congress, vol. 18, pp. 1435–1440 (2011)Google Scholar
  37. 37.
    Apkarian, P., Noll, D.: Nonsmooth H  ∞  synthesis. IEEE Transactions on Automatic Control 51(1), 71–86 (2006)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Apkarian, P.: Tuning Controllers Against Multiple Design Requirements. In: American Control Conference, vol. 1, pp. 3888–3893 (2013)Google Scholar
  39. 39.
    Alazard, D., Loquen, T., de Plinval, H., Cumer, C.: Avionics/Control co-design for large flexible space structures. In: AIAA Guidance, Navigation, and Control (GNC) Conference, pp. 1–15. AIAA (2013)Google Scholar
  40. 40.
    Carignan, C.R., Akin, D.L.: The reaction stabilization of on-orbit robots. IEEE Control Systems 20, 19–33 (2000)CrossRefGoogle Scholar
  41. 41.
    Athans, M., Falb, P.L.: Optimal Control. McGraw-Hill (1966)Google Scholar
  42. 42.
    Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Hemisphere, New York (1975)Google Scholar
  43. 43.
    Alazard, D.: Reverse engineering in control design. ISTE / John Wiley & Sons, London / Hoboken (2013)Google Scholar
  44. 44.
    Kawamura, S., Miyazaki, F., Arimoto, S.: Is a local linear PD feedback control law effective for trajectory tracking of robot motion? In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 1335–1340 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vincent Dubanchet
    • 1
    Email author
  • David Saussié
    • 1
  • Daniel Alazard
    • 2
  • Caroline Bérard
    • 2
  • Catherine Le Peuvédic
    • 3
  1. 1.École Polytechnique de MontréalMontréalCanada
  2. 2.Institut Supérieur de l’Aéronautique et de l’EspaceToulouseFrance
  3. 3.Thales Alenia SpaceCannesFrance

Personalised recommendations